Transplantation of neuronal precursors derived from induced pluripotent stem cells into the striatum of rats with the toxin-induced model of Huntington’s disease

Cover Page


Cite item

Full Text

Abstract

Introduction. Huntington’s disease (HD) is a severe neurodegenerative disorder characterized by choreic hyperkinesis, cognitive decline, behavioral disorders, and progressive neuronal death, mostly in the striatum. Since HD is a fatal disorder, searching for efficient treatment methods, including those based on cell replacement therapy, is quite relevant. The experimental models of HD are used increasingly often.
The objective of the study was to assess effectiveness and safety of transplantation of neuronal precursors differentiated from induced pluripotent stem cells (iPSCs) from a healthy donor into the striatum of rats with 3-NPA-induced HD model.
Materials and methods. We studied the influence of neurotransplantation on the behavioral effects in rats with HD model induced by intrastriatal injection of 3-nitropropiotic acid (3-NPA). In the study group of animals (n=11), human neuronal precursors derived from iPSCs of a healthy volunteer were transplanted into the caudate nuclei (5×105 per 5 μl of normal saline solution bilaterally); the control group of animals (n=10) received normal saline solution. The animals were tested using the Any-maze video tracking system; the parameters of the open-field test and the conditioned avoidance response test were evaluated.
Results. An analysis of behavioral effects after transplantation demonstrated that introduction of neuronal iPSC derivatives into the caudate nuclei of rats with induced HD model was accompanied by recovery of motor activity of the animals (horizontal and vertical), as opposed to the control group. It was found during testing the reproducibility of the conditioned avoidance responses that the conditioned avoidance responses in control animals were weakened, whereas intrastriatal transplantation of neurons abruptly increased the latency of moving into the dark compartment of the chamber in the conditioned avoidance response test.
Conclusions. The pilot experiment using the HD model showed that neurotransplantation using iPSC derivatives recovers the reduced motor activity in rats and improves memory trace keeping, which contributes to correction of motor and cognitive disorders induced by 3-NPA neurotoxin.

About the authors

Alla V. Stavrovskaya

Research Center of Neurology

Author for correspondence.
Email: alla_stav@mail.ru
Russian Federation, Moscow

Nina G. Yamshchikova

Research Center of Neurology

Email: alla_stav@mail.ru
Russian Federation, Moscow

Аrtyem S. Ol'shansky

Research Center of Neurology

Email: alla_stav@mail.ru
Russian Federation, Moscow

Eugeniya V. Konovalova

Research Center of Neurology

Email: alla_stav@mail.ru
Russian Federation, Moscow

Sergey N. Illarioshkin

Research Center of Neurology

Email: alla_stav@mail.ru
ORCID iD: 0000-0002-2704-6282

D. Sci. (Med.), Prof., Corr. Member of the Russian Academy of Sciences, Deputy Director, Head, Department for brain research

Russian Federation, Moscow

References

  1. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993; 72: 971–983. PMID: 8458085.
  2. Ivanova-Smolenskaya I.A., Ovchinnikov I.V., Illarioshkin S.N. et al., [Molecular and genetic testing in diagnostics of sporadic cases of Huntington’s chorea]. Zhurnal nevrologii b psihiatrii im.Korsakova) 1998; 3: 19–22.(in Russ.).
  3. Illarioshkin S.N. [DNA diagnostics and medicogenetic consultation]. Moscow; МIA, 2004. (in Russ.).
  4. Estrada Sanchez A.M., Mejia-Toiber J., Massieu L. Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch. Med. Res. 2008; 39: 265–276. PMID: 18279698 doi: 10.1016/j.arcmed.2007.11.011.
  5. Ivanova-Smolenskaya I.A., Markova E.D., Illarioshkin S.N., Nikol’skaya N.N. [Monogenic hereditary diseases of the central nervous system] In: Vel’tishcheva J.E., Temina P.A. Nasledstvennye bolezni nervnoy sistemy. Rukovodstvo dlya vrachey (eds). [Hereditary diseases of nervous system. Guidelines for doctors]. Moscow: Meditsina, 1998: 9–104. (in Russ.).
  6. Illarioshkin S.N. Huntington’s disease as model for studying of neurodegenerative diseases. [Byulleten natsional’ogo obshchestva po izucheniyu bolezni Parkinsona i rasstroystvam dvizheniy] 2016; 1: 3–11.(in Russ.).
  7. Southwell A.L., Ko J., Patterson P.H. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J. Neurosci. 2009; 29: 13589–13602. PMID: 19864571 doi: 10.1523/JNEUROSCI.4286-09.2009.
  8. Nekrasov E.D., Lebedeva O.S., Vasina E.M. et al. [Platform for studying of Huntington’s disease on the base of induced pluripotent stem cells]. Annaly klinicheskoi I eksperimentalnoi nevrologii. 2012; 4: 30–35. (in Russ.).
  9. Bachoud-Levi A.-C. Neural grafts in Huntington’s disease: Viability after 10 years. Lancet Neurol. 2009; 8: 979-981. PMID: 19833293 doi: 10.1016/S1474-4422(09)70278-9.
  10. Cicchetti F., Saporta S., Hauser R.A. et al. Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc. Natl. Acad. Sci. USA. 2009; 106: 12483–12488. PMID: 19620721 doi: 10.1073/pnas.0904239106.
  11. Kerkis I., Haddad M., Valverde C., Glosman S. Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges. Stem Cell Research & Therapy. 2015; 6: 232. PMID: 26667114 doi: 10.1186/s13287-015-0248-1.
  12. Maucksch C., Vazey E., Gordon R., Connor B. Stem cell-based therapy for Huntington’s disease. J. Cell. Biochem. 2013; 114: 754–763. PMID: 23097329 doi: 10.1002/jcb.24432.
  13. Reuter I., Tai Y.F., Pavese N. et al. Long-term clinical and positron emission tomography out-come of fetal striatal transplantation in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 2008; 79: 948–951.
  14. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–676. PMID: 16904174 doi: 10.1016/j.cell.2006.07.024.
  15. Yamanaka S., Blau H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010; 465: 704–712. PMID: 20535199 doi: 10.1038/nature09229.
  16. Fink K., Crane A. et al., Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington’s disease. Stem Cells Translational Medicine. 2014; 3: 620–631. PMID: 24657963 doi: 10.5966/sctm.2013-0151.
  17. Fink K., Rossignol J., Lu M. et al. Survival and differentiation of adenovirus-generated induced pluripotent stem cells transplanted into the rat striatum. Cell Transplant. 2013 [Epub ahead of print]. PMID: 23879897 doi: 10.3727/096368913X670958.
  18. Peng J., Zeng X. The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases. Stem Cell Res. Ther. 2011; 2: 32. PMID: 21861938 doi: 10.1186/scrt73.
  19. Stavrovskaya A.V., Konorova I.L., Illarioshkin S.N. et al., [Technologies of nervous system diseases modeling]. M.A. Piradov, S.N. Illarioshkin, M.M. Tanashyan (eds). Nevrologiya XXI veka: diagnosticheskie, lechebnye i issledovatel’skie tekhnologii: Rukovodstvo dlya vrachey. V 3-kh t. T. 3: Sovremennye issledovatel’skie tekhnologii v eksperimental’noy nevrologii. [Neurology of the 21st century: diagnostic, medical and research technologies: Guidelines for doctors in 3 Vol. Vol.3: The modern research technologies in the experimental neurology]. Мoscow: «АТМО», 2015: 73–133. (in Russ.).
  20. Cisbani G, Cicchetti F. An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis. 2012; 3: e382. PMID: 22932724 doi: 10.1038/cddis.2012.121.
  21. Roberts T.J., Price J., Williams S.C., Modo M. Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience. 2006; 139: 1187–1199. PMID: 16517087 doi: 10.1016/j.neuroscience.2006.01.025.
  22. Ryu J.K., Kim J., Cho S.J. et al. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol. Dis. 2004; 16: 68–77. PMID: 15207263 doi: 10.1016/j.nbd.2004.01.016.
  23. Tunez I., Tasset I., Perez De La Cruz V. et al. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: Past, present and future. Molecules. 2010; 15: 878–916. PMID: 20335954 doi: 10.3390/molecules15020878.
  24. El Massioui N., Ouary S., Cheruel F. et al. Perseverative behavior underlying attentional set-shifting deficits in rats chronically treated with the neurotoxin 3-nitropropionic acid. Exp. Neurol. 2001; 172: 172–181. PMID: 11681849 doi: 10.1006/exnr.2001.7766.
  25. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. Academic Press, 1998.
  26. Stavrovskaya A.V., Voronkov D.N., Yamshikova N.G. et al. [Experience of the experimental modeling of Huntington’s disease]. Annaly klinicheskoi I neksperimentalnoi nevrologii. 2015; 3: 49–55.
  27. Bantubungi K., Blum D., Cuvelier L. et al. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease. Mol. Cell Neurosci. 2008; 37: 454–470. PMID: 18083596 doi: 10.1016/j.mcn.2007.11.001.
  28. Johann V., Schiefer J., Sass C. et al. Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease. Exp Brain Res. 2007; 177: 458–470. PMID: 17013619 doi: 10.1007/s00221-006-0689-y.
  29. Lee S.T., Chu K., Park J.E. et al. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci. Res. 2005; 52: 243–249. PMID: 15896865 doi: 10.1016/j.neures.2005.03.016.
  30. Shear D.A., Haik K.L., Dunbar G.L. Creatine reduces 3-nitropropionic-acid-induced cogni- tive and motor abnormalities in rats. Neuroreport. 2000; 11: 1833–1837. PMID: 10884028.
  31. Rossignol J., Boyer C., Lévèque X. et al. Mesenchymal stem cell transplantation and DMEM administration in a 3-NP rat model of Huntington’s disease: Morphological and behavioral outcomes. Behav. Brain Res. 2011; 217: 369–378. PMID: 21070819 doi: 10.1016/j.bbr.2010.11.006.
  32. Kendall A., Hantraye P., Palfi S. Striatal tissue transplantation in non-human primates. Prog. Brain Res. 2000; 127: 381–404. PMID: 11142037.
  33. Brouillet E., Jacquard C., Bizat N., Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 2005; 95: 1521–1540. PMID: 16300642 doi: 10.1111/j.1471-4159.2005.03515.x.
  34. Becker S., Lim J. A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task. J. Cogn. Neurosci. 2003; 15: 821–832. PMID: 14511535 doi: 10.1162/089892903322370744.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Stavrovskaya A.V., Yamshchikova N.G., Ol’shanskiy A.S., Konovalova E.V., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies