Experience of using MRI morphometry in Huntington’s disease
- Authors: Yudina E.N.1, Konovalov R.N.2, Abramycheva N.Y.2, Klyushnikov S.A.2, Illarioshkin S.N.2
-
Affiliations:
- Research Center of Neurology,
- Research Center of Neurology
- Issue: Vol 7, No 4 (2013)
- Pages: 16-19
- Section: Original articles
- Submitted: 02.02.2017
- Published: 09.02.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/222
- DOI: https://doi.org/10.17816/psaic222
- ID: 222
Cite item
Full Text
Abstract
One of the most important inherited neurodegenerative disorders, Huntington’s disease (HD), is characterized by cerebral atrophy, the features of which need to be clarified. MRI morphometry allows assessing quantitatively the atrophy of different brain regions, and this method may be regarded as a potential biomarker of neurodegeneration. We used whole-brain voxel-based morphometry (VBM) and region-of-interest (ROI) morphometry in 24 patients with HD, 10 preclinical HD gene carriers and 9 controls. On whole-brain VBM patients had significantly lower grey matter in the caudate, the putamen, and the pre- and postcentral gyri bilaterally compared to controls, while on ROI morphometry the grey matter volume decrease in patients was seen in the caudate, the putamen and the pallidum bilaterally. In clinically unaffected gene carriers the pallidum, the putamen, and the pre-and postcentral gyri bilaterally were larger and the left pallidum was smaller compared to controls. We found more pronounced atrophy of a dominant hemisphere in patients and gene carriers, as well as negative correlation between basal ganglia and cortical structures volumes and the mutation severity, motor and cognitive impairment.
Keywords
About the authors
E. N. Yudina
Research Center of Neurology,
Email: snillario@gmail.com
Россия, Moscow
Rodion N. Konovalov
Research Center of Neurology
Email: snillario@gmail.com
ORCID iD: 0000-0001-5539-245X
Cand. Sci. (Med.), senior researcher, Neuroradiology department
Россия, 125367 Moscow, Volokolamskoye shosse, 80Natal’ya Yu. Abramycheva
Research Center of Neurology
Email: snillario@gmail.com
Россия, Moscow
Sergey A. Klyushnikov
Research Center of Neurology
Email: snillario@gmail.com
Россия, Moscow
Sergey N. Illarioshkin
Research Center of Neurology
Author for correspondence.
Email: snillario@gmail.com
ORCID iD: 0000-0002-2704-6282
D. Sci. (Med.), Prof., Corr. Member of the Russian Academy of Sciences, Deputy Director, Head, Department for brain research
Россия, MoscowReferences
- Колесниченко Ю.А, Машин В.В., Иллариошкин С.Н., Зайц Р.Дж. Воксел-ориентированная морфометрия: новый метод оценки локальных вторичных атрофических изменений головного мозга. Анн. клин. эксперимент. неврол. 2007; 4: 35–42.
- Aylward E., Mills J., Liu D. et al. Association between age and striatal volume stratified by CAG repeat length in prodromal Huntington disease. PLOS Currents Huntington Dis. 2011; 11.
- Draganski B., Bhatia K.P. Brain structure in movement disorders: a neuroimaging perspective. Cur. Opin. Neurol. 2010; 23: 413–419.
- Henley S., Ridgway G.R., Scahill R.I. et al. Pitfalls in the use of voxelbased morphometry as a biomarker: examples from Huntington disease. Am. J. Neuroradiol. 2010; 31: 711–719.
- Henley S., Wild E., Hobbs N. et al. Relationship between CAG repeat length and brain volume in premanifest and early Huntigton’s disease. J. Neurol. 2009; 256: 203–212.
- Ille R., Schäfer A., Scharmüller W. et al. Emotion recognition and experience in Huntington disease: a voxel-based morphometry study. J. Psychiatry Neurosci. 2011; 36: 6–10.
- Kassubek J., Pinkhardt E.H., Dietmaier A. et al. Fully automated atlas-based MR imaging volumetry in Huntington disease, compared with manual volumetry. Am. J. Neuroradiol. 2011; 32: 1328–1332.
- Kassubek J., Juengling F.D., Kioschies T. et al. Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J. Neurol. Neurosurg. Psychiatry 2004; 75: 213–220.
- Klöppel S., Chu C., Tan G.C. et al. Automatic detection of preclinical neurodegeneration. Neurology 2009; 72: 426–431.
- Lambrecqa V., Langboura N., Guehla D. et al. Evolution of brain gray matter loss in Huntington’s disease: a meta-analysis. Eur. J. Neurol. 2013; 20: 315–321.
- Muhlau M., Gaser C., Wohlschager A. et al. Striatal atrophy in Huntington’s disease is leftward biased. In: World Congress on Huntington’s disease. Dresden, 2007: 120.
- Rosas H.D., Salat D.H., Lee S. et al. Complexity and heterogeneity: what drives the ever changing brain in Huntigton’s disease? Ann. NY Acad. Sci. 2008; 1147: 196.
- Stoffers D., Sheldon S., Kuperman J.M. et al. Contrasting gray and white matter changes in preclinical Huntington disease. Neurology 2010; 74: 1208–1216.
- Tabrizi S.J., Langbehn D.R., Leavitt B.R. et al. TRACK-HD investigators. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009; 8: 791–801.
- Tabrizi S.J., Reilmann R., Roos R.A. et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012; 11: 42–53.
- Tabrizi S.J., Scahill R.I., Durr A. et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011; 10: 31–42.
- Whitwell J.L., Josephs K.A. Voxel-based morphometry and its application to movement disorders. Parkinsonism Relat. Disord. 2007; 13: 406–416.