Functional reorganization of sensorimotor cortex in chronic hemispheric ischemic stroke patients with different severity of motor deficit

Cover Page


Cite item

Full Text

Abstract

Motor recovery after ischemic stroke is associated with the neural networks reorganization. fMRI studies of these networks in patients with mild motor deficit showed that activation pattern can be used for the prognosis of functional recovery. However, characteristics and clinical relevance of activation patterns in patients with severe to moderate motor deficit, its effective functioning in patients with different severity of primary sensorimotor system components (corticospinal tract [CST] and primary sensorimotor [SM] cortex) injury were not investigated. Twentyfive chronic hemispheric ischemic stroke patients were studied (13 males, 12 females; median age 38.0±5.9 years). Depending on the severity of hand motor impairment and functional outcome the patients were divided into 3 groups. All patients underwent 1.5 T fMRI (Siemens Avanto) with passive block paradigm of paretic index finger movement (1 Hz frequency). Statistic maps of group activation showed significant differences in groups with different functional outcome: the more severe was motor deficit, the less SM activation volume size in injured hemisphere was seen, and activation cluster center moved towards non-primary motor cortex. The association between the activation volume of SM and structural integrity of CST, assessed by fractional anisotropy index was revealed. Statistic maps of individual activation showed SM activation in injured hemisphere in 38% patients with unfavourable (severe paresis, plegia) and moderate recovery with different physiologic lateralization, that is typical for the group with good recovery (mild and moderate paresis). These data do not allow us to consider the activation pattern as a marker of motor recovery and prognostic factor in patients with severe and moderate motor deficit. Our results showed that sensorimotor networks formation and functioning differ depending on the CST sparing, and its effective work is possible in certain degree CST integrity.

 

About the authors

Larisa A. Dobrynina

Research Center of Neurology

Author for correspondence.
Email: dobrla@mail.ru
ORCID iD: 0000-0001-9929-2725

D. Sci. (Med.), Head, 3rd Neurological department

Russian Federation, Moscow

Elena I. Kremneva

Research Center of Neurology

Email: dobrla@mail.ru
ORCID iD: 0000-0001-9396-6063

Cand. Sci. (Med.), senior researcher, Radiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Rodion N. Konovalov

Research Center of Neurology

Email: dobrla@mail.ru
ORCID iD: 0000-0001-5539-245X

Cand. Sci. (Med.), senior researcher, Department of radiation diagnostics, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Albert S. Kadykov

Research Center of Neurology

Email: dobrla@mail.ru
ORCID iD: 0000-0001-7491-7215

D. Sci. (Med.), Professor, senior researcher, 3rd Neurological department

Russian Federation, Moscow

References

  1. Добрынина Л.А. Возможности функциональной и структурной нейровизуализации в изучении восстановления двигательных функций после ишемического инсульта. Анналы клин. и эксперим. неврологии 2011: 5 (3): 53–61.
  2. Добрынина Л.А., Коновалов Р.Н., Кремнева Е.И., Кадыков А.С. МРТ в оценке двигательного восстановления больных с хроническими супратенториальными инфарктами. Анналы клин. и эксперим. неврологии 2012; 6 (2): 4–10.
  3. Добрынина Л.А., Кремнева Е.И., Коновалов Р.Н., Кадыков А.С. Использование пассивной двигательной парадигмы в оценке сенсомоторной системы методом фМРТ. Анналы клин. и эксперим. неврологии 2011: 5 (3): 11–19.
  4. Кадыков А.С. Реабилитация после инсульта. М.: Миклош, 2003, 176.
  5. Столярова Л.Г., Кадыков А.С., Ткачева Г.Р. Система оценок состояния двигательных функций у больных с постинсультными парезами. Журн. Невропатология и психиатрия 1982; 9: 15–18.
  6. Baehr M., Frotscher M. Duus’ topical diagnosis in neurology: anatomy, physiology, signs, symptoms. Thieme, 4th 2005.
  7. Baron J.C., Cohen L.G., Cramer S.C. et al. Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc Dis 2004; 18: 260–267.
  8. Binkofski F., Seitz R.J., Arnold S. et al. Thalamic metabolism and cortocospinal tract integrity determine motor recovery in stroke. Ann Neurol 1996; 39: 460–470.
  9. Calautti C., Baron J.C. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 2003; 34: 1553–1566.
  10. Carey L.M., Abbot D.F., Egan G.F. et al. Evolution of brain activation with good and poor motor recovery after stroke. Neurorehabil Neural Repair 2006; 20: 24–41.
  11. Carey L.M., Abbot D.F., Egan G.F. et al. Motor impairment and recovery in the upper limb after stroke: behavioral and neuroanatomical correlates. Stroke 2005; 36: 625–629.
  12. Corti M., Patten С., Triggs W. Repetitive transcranial magnetic stimulation of motor cortex after stroke. Am J Phys Med Rehabil. & 2012; 3: 254–270.
  13. Cramer S.C., Nelles G., Schaechter J.D. et al. A functional MRI study of three motor tasks in the evaluation of stroke recovery. Neurorehabil Neural Repair 2001; 15: 1–8.
  14. Feydy A., Carlier R., Roby-Brami A. et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002; 33: 1610–1617.
  15. Gerloff C., Bushara K., Sailer A. et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 2006; 129: 791–808.
  16. Johansen-Berg H., Dawes H., Guy C. et al. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002; 125 (Pt 12): 2731–2742.
  17. Lancaster J.L., Woldorff M.G., Parsons L.M. et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000; 10: 120–131.
  18. Loubinoux I., Carel C., Pariente J. et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 2003; 20 (4): 2166–2180.
  19. Maldjian J.A., Laurienti P.J., Kraft R.A., Burdette J.H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233–1239.
  20. Merzenich M.M., Jenkins W.M. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther 1993; 6: 89–104.
  21. Nudo R.J., Wise B.M., SiFuentes F., Milliken G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272: 1791–1794.
  22. Rossini P.M., Altamura C., Ferreri F. et al. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Eura medicophys 2007; 43: 241–254.
  23. Rossini P.M., Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am 2004; 15: 263–306.
  24. Schaechter J.D., Perdue K.L., Wang R. Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage 2008 February 1; 39 (3): 1370–1382.
  25. Stinear C.M., Barber P.A., Smale P.R. et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007; 130 (Pt 1):170–180.
  26. Strick P.L. Anatomical organization of multiple motor areas in the frontal lobe: implications for recovery of function. Adv Neurol 1988; 47: 293–312.
  27. Ward N.S. Future perspectives in functional neuroimaging in stroke recovery. Eura medicophys 2007; 43: 285–294.
  28. Ward N.S., Brown M.M., Thompson A.J., Frackowiak R.S. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003; 126: 1430–48.
  29. Ward N.S., Frackowiak R.S. The functional anatomy of cerebral reorganization after focal brain injury. J.Physiol. Paris 2006 (b); 99: 425–436.
  30. Ward N.S., Newton J.M., Swayne O.B. et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006; 129 (Pt 3): 809–819 31.Weiller C., Ramsay S.C., Wise R.J. et al. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993; 33: 181–189.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Dobrynina L.A., Kremneva E.I., Konovalov R.N., Kadykov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies