Прижизненная оценка накопления β-амилоида в головном мозге человека

Cover Page

Abstract

Болезнь Альцгеймера (БА) является основной причиной первичной деменции, и необходимость в эффективной терапии БА чрезвычайно велика. Накопление β амилоида (Aβ) в мозге представляет собой хорошо известный специфический признак БА. Однако растущее число работ показывает, что патологическое накопление Aβ может иметь место задолго до клинической манифестации БА. Сегодня доступны технологии визуализации Ab, имеющие значительный потенциал с точки зрения количественной оценки патологии Aβ, ассоциированной со старением и БА. В настоящее время наиболее надежной технологией визуализации патологии Ab в мозге человека in vivo является позитронно-эмиссионная томография (ПЭТ) с радиофармпрепаратом [11C] PIB. Этот метод продемонстрировал значительное накопление Aβ у больных БА и при умеренных когнитивных расстройствах. Наиболее серьезным наблюдением стал тот факт, что некоторые пожилые лица с сохранными когнитивными функциями имеют повышенное связывание [11C] PIB, что может указывать на преклиническую стадию БА. Требуется дальнейшее накопление данных для демонстрации временнoго паттерна накопления бляшек Aβ в мозге, что должно существенно улучшить наши знания о природе БА и помочь предложить более совершенные терапевтические подходы.

About the authors

А. Г. Власенко

Отделение радиологии медицинского факультета Вашингтонского университета, Сент Луис

Author for correspondence.
Email: platonova@neurology.ru
United States

М. А. Минтон

Отделение радиологии медицинского факультета Вашингтонского университета, Сент Луис

Email: platonova@neurology.ru
United States

References

  1. Agdeppa E.D., Kepe V., Liu J. et al. Binding characteristics of radio-fluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta2amyloid plaques in Alzheimer’s disease. J. Neurosci. 2001; 21: RC189.
  2. Bacskai B.J., Frosch M.P., Freeman S.H. et al. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch. Neurol. 2007; 64: 431–434.
  3. Bennett D.A., Wilson R.S., Schneider J.A. et al. Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology 2003; 60: 1909–1915.
  4. Blennow K., Hampel H. CSF markers for incipient Alzheimer’s disease. LaetncNeurol. 2003; 2: 605–613.
  5. Boxer A.L., Rabinovici G.D., Kepe V. et al. Amyloid imaging in distinguishing atypical prion disease from Alzheimer disease. Neurology 2007; 69: 283–290.
  6. Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl) 1991; 82: 239–259.
  7. Buckner R.L., Snyder A.Z., Shannon B.J. et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 2005; 25: 7709–7717.
  8. Busse A., Angermeyer M.C., Riedel Heller S.G. Progression of mild cognitive impairment to dementia: a challenge to current thinking. Br. J. Psychiatry 2006; 189: 399–404.
  9. Engler H., Forsberg A., Almkvist O. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006; 129: 2856–2866.
  10. Engler H., Santillo A.F., Wang S.X. et al. In vivo amyloid imaging with PET in frontotemporal dementia. Eur. J. Nucl. Med. Mol. Imaging 2008; 35: 100–106.
  11. Fagan A.M., Mintun Ma.Ac.h, RM.H. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann. Neurol. 2006; 59: 512–519.
  12. Fagan A.M., Roe C.M., Xiong C. et al. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 2007; 64: 343–349.
  13. For.mSa.,nMMufson E.J., Leurgans S. et al. Cortical biochemistry in MCI and Alzheimer disease: lack of correlation with clinical diagnosis. Neurology 2007; 68: 757–763.
  14. Goldman W.P., Price J.L., Storandt M. et al. Absence of cognitive impairment or decline in preclinical Alzheimer’s disease. Neurology 2001; 56: 361–367.
  15. Hardy J., Selkoe D.J.hTe amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356.
  16. Hardy J.A., Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256: 184–185.
  17. Hulette C.M., Welsh Bohmer K.A., Murray M. G. et al. Neuropathological and neuropsychological changes in «normal» aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J. Neuropathol. Exp.Neurol. 1998; 57: 1168–1174.
  18. Ikonomovic M.D., Klunk W.E., Abrahamson E.E. et al. Post-mortem correlates of in vivo PiB2PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 2008; 131: 1630–1645.
  19. Irizarry M.C. Biomarkers olzfhAeimer disease in plasma. NeuroRx. 2004; 1: 226–234.
  20. Johansson A., Savitcheva I., Forsberg A. et al. [(11)C]-PIB imaging in patients with Parkinson’s disease: preliminary results. Parkinsonism Relat. Disord. 2008; 14: 345–347.
  21. Johnson K.A., Gregas M., Becker J.A. et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy.Ann. Neurol. 2007; 62: 229–234.
  22. Kemppainen N.M., Aalto S., Wilson I.A. et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603–1606.
  23. Kemppainen N.M., Aalto S., Karrasch M. et al. Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography ienlartion to education in mild Alzheimer’s disease. Ann. Neurol. 2008; 63: 112–118.
  24. Kim J., Onstead L., Randle S. et al. Abeta40 inhibits amyloid deposition in vivo. J. Neurosci. 2007; 27: 627–633.
  25. Klunk W.E., Wang Y., Huang G.F. et al. The binding of 22(4’2methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J. Neurosci. 2003; 23: 2086–2092.
  26. Klunk W.E., Engler H., Nordberg A. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004; 55: 306–319.
  27. Klunk W.E., Mathis C.A.. The future of amyloid2beta imaging: a tale of radionuclides and tracer proliferation. Curr. Opin. Neurol. 2008; 21: 683–687.
  28. u8o. YK.M., Emmerling M.R., Vigo Pelfrey C. et al. Water-soluble Abeta (N240, N242) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 1996; 271: 4077–4081.
  29. Leinonen V., Alafuzoff I., Aalto S. et al. Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled PittsobumrpghouCnd B. Arch. Neurol. 2008; 65: 1304–1309.
  30. Lockhart A., Lamb J.R., Osredkar T. et al. PIB is a non-specific imaging marker of amyloid2beta (Abeta) peptide-related cerebral amyloidosis. Brain 2007; 130: 2607–2615.
  31. Lopresti B.J., Klunk W.E., Mathis C.A. et al. Simplified Quantification of Pittsburgh Compound B Amyloid Imaging PEtuTdieSs: A Comparative Analysis. J. Nucl. Med. 2005; 46: 1959–1972.
  32. Mathis C., Lopresti B., Mason N. et al. Comparison of the amyloid imaging agents [F-18]3’-F-PIB and [C-11]PIB in Alzheimer’s disease and control subjects. J. Nucl. Med. 2007; 48 (Suppl. 2): 56.
  33. Maya Y., Ono M., Watanabe H. et al. Novel radioiodinated aurones as probes for STPEimCaging of beta-amyloid plaques in the brain. Bioconjug. Chem. 2009; 20: 95–101.
  34. Mintun M.A., Larossa G.N., Sheline Y.I. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446–452.
  35. Mortimer J.A., Borenstein A.R., Gosche K.M. et al. Very early detection of Alzheimer neuropathogoyl and the role of brain reserve in modifying its clinical expression. J. Geriatr. Psychiatry. Neurol. 2005; 18: 218–223.
  36. Newberg A.B., Wintering N.A., Plossl K. et al. Safety, biodistribution, and dosimetry of 123I2IMPY: a novel amyloid plaque2imaging agent for the diagnosis of Alzheimer’s disease. J. Nucl. Med. 2006; 47: 748–754.
  37. Ng S.Yill.e,mVagne V.L., Masters C.L. et al. Evaluating atypical dementia syndromes using positron emission tomography with carbon
  38. labeled Pittsburgh Compound B. Arch. Neurol. 2007; 64:
  39. –1144.
  40. Noda A., Murakami Y., Nishiyama S. et al. Amyloid imaging in aged and young macaques with [11C]PIB and [18F]FDDNP. Synapse 2008; 62: 472–475.
  41. Ono M., Wils.o,nNAobrega J. et al. 11C2labeled stilbene derivatives as Abeta2aggregate2specific PET imaging agents for Alzheimer’s disease. Nucl. Med. Biol. 2003; 30: 565–571.
  42. Petersen R.C., Doody R., Kurz A. et al. Current concepts in mild cognitive impairment. Arch. Neurol. 2001; 58: 1985–1992.
  43. Petersen R.C., Thomas R.G., Grundman M. et al. Vitamin nEdadonepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 2005; 352: 2379–2388.
  44. Pomara N., Willoughby L.M., Sidtis J.J. et al. Selective reductions in plasma Abeta 1242 in healthy elderly subjects during longitudinal follow2up: a preliminary report. Am. J. Geriatr. Psychiatry. 2005; 13: 914–917.
  45. Price J.C., Klunk W.E., Lopresti B.J. et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound2B. J. Cereb. Blood Flow Metab. 2005; 25: 1528–1547.
  46. Raichle M.E., MacLeod A.M., Snyder A.Z. et al. A default mode of brain function. Proc. Natl. Acad. Sci U.S.A. 2001; 98: 676–682.
  47. Roe C.M., Mintun M.A., D’Angelo. Get al. Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch. Neurol. 2008a; 65: 1467–1471.
  48. Roe C.M., Xiong C., Miller J.P. et al. Interaction of neuritic plaques and education predicts dementia. Alzheimer Dis. Assoc. Disord. 2008b; 22: 188–193.
  49. Rowe C., Ng S., Mullig. aetnaRl. First results from human studies of a novel F218 PET ligand for brain –amyloid imaging. J. Nucl. Med. 2007a; 48 (Suppl. 2): 57.
  50. Rowe C.C., Ng S., Ackermann U. et al. Imaging beta-amyloid burden in aging and dementia. Neurology. 2007b; 68: 1718–1725.
  51. Scheinin N.M., Tolvanen T.K., Wilson I.A. et al. Biodistribution and radiationodsimetry of the amyloid imaging agent 11C2PIB in humans. J. Nucl. Med. 2007; 48: 128–133.
  52. Serdons K., Verduyckt T., Vanderghinste D. et al. Synthesis of 18F-labelled 22(4’2fluorophenyl)21,32benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB. Bioorg. Med. Chem. Lett. 2009; 19: 602–605.
  53. Shoghi Jadid K.G., Small W., Agdeppa E.D. et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 2002; 10: 24–35.
  54. Small G.W., Kepe V., Ercoli L.M. et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 2006; 355: 2652–2663.
  55. Stern Y. Cognitve reserve and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2006; 20: 112–117.
  56. Strozyk D., Blennow K., White L.R. et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology. 2003; 60: 652–656.
  57. Talairach J., Tournoux P. Co-planar Stereotaxic Atlas of The Human Brain. New York: ThiemedMical, 1998.
  58. Tomlinson B.E., Blessed G., Roth M. Observations on the brains of non-demented old people. J. Neurol. Sci. 1968; 7: 331–356.
  59. Van Oijen M., Hofman A., Soares H.D. et al. Plasma Abeta(1240) and Abeta(1242) and the risk of dementia: a prospective case2cohort study. Lancet Neurol. 2006; 5: 655–660.
  60. Verhoef N., Wilson A.A., Takeshita.Set al. In vivo imaging of Alzheimer disease a-amyloid with [11C]SB213 PET. Am. J. Geriatr. Psychiatry. 2004;12: 584–595.
  61. Villemagne V.L., Pike K.E., Darby D. et al. Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia. 2008; 46: 1688–1697.
  62. Vlassenko.GA., Vaishnavi S.N., Rundle M.M. et al. Spatial correlation between aerobic glycolysis and beta-amyloid deposition. J. Neurol. 2008; 255: 38.
  63. Yan Y., Wang C. Abeta40 protects non-toxic Abeta42 monomer from aggregation. J. Mol. Biol. 2007; 369: 909–916.
  64. Zhuang Z.P., Kung M. P., Wilson A. et al. Structure-activity relationship of imidazo[1,2id2ian]epsyars ligands for detecting beta-amyloid plaques in the brain. J. Med. Chem. 2003; 46: 237–243.

Statistics

Views

Abstract: 1211

PDF (Russian): 790

Article Metrics

Metrics Loading ...

Dimensions

PlumX


Copyright (c) 2009 Власенко А.Г., Минтон М.А.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies