Neuroanatomic differences of the brain in males and females
- Authors: Polunina A.G.1, Bryun E.A.1
-
Affiliations:
- Moscow Research and Practical Center for Drug Addiction
- Issue: Vol 11, No 3 (2017)
- Pages: 68-75
- Section: Reviews
- Submitted: 28.09.2017
- Published: 28.09.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/491
- DOI: https://doi.org/10.18454/ACEN.2017.3.10
- ID: 491
Cite item
Full Text
Abstract
Gender distribution is an important factor in patient cohorts which may influence the results acquired in studies on pathogenesis and treatment of neuropsychiatric disorders. In all age groups, the mean brain volume is approximately 8–15% larger in males than in females, so the absolute volumes of almost all neuronal and white matter brain structures are larger in males. Several studies showed that body size and brain volumes may influence the results of neuroanatomical studies. In addition, brain maturation rate is faster in females than in males which should be considered as another important contributor to possible inconsistencies in the results of studies of gender effects on neuroanatomy, particularly in cohorts of young patients. Taking those circumstances into account, the most consistent findings in this field demonstrated larger amygdala volume in males in comparison with females, which was applicable to both paediatric and adult populations. Data on gender differences in neuroanatomy of visual and auditory cortical areas seem to be reasonable. Larger relative volumes of limbic and paralimbic cortex in females in comparison with males were consistently found in a range of studies as well. Overall, global and regional hemisphere asymmetry values are more pronounced in males in comparison with females.
About the authors
Anna G. Polunina
Moscow Research and Practical Center for Drug Addiction
Author for correspondence.
Email: polunina.ag@gmail.com
Россия, Moscow
Evgeniy A. Bryun
Moscow Research and Practical Center for Drug Addiction
Email: polunina.ag@gmail.com
Россия, Moscow
References
- Leonard C.M., Towler S., Welcome S. et al. Size matters: cerebral volume influences sex differences in neuroanatomy. Cereb. Cortex 2008; 18(12): 2920-31. doi: 10.1093/cercor/bhn052 PMID: 18440950
- Pintzka C.W., Hansen T.I., Evensmoen H.R., Håberg A.K. Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: a HUNT MRI study. Front. Neurosci. 2015;9:238. doi: 10.3389/fnins.2015.00238 PMID: 26217172
- Gur R.C., Turetsky B.I., Matsui M. et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J. Neurosc. 1999; 19(10): 4065-4072. PMID: 10234034 4. Lenroot R.K., Giedd J.N. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006; 30(6): 718-29. doi: 10.1016/j.neubiorev.2006.06.001 PMID: 16887188
- Luders E., Gaser C., Narr K.L., Toga A.W. Why sex matters: brain size independent differences in gray matter distributions between men and women. J. Neurosci. 2009; 29(45): 14265-14270. doi: 10.1523/JNEUROSCI.2261-09.2009 PMID: 19906974
- Reiss A.L., Abrams M.T., Singer H.S. et al. Brain development, gender and IQ in children: a volumetric imaging study. Brain. 1996; 119: 1763-1774. PMID: 8931596 7. Ruigrok A.N., Salimi-Khorshidi G., Lai M.C. et al. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2014; 39: 34-50 doi: 10.1016/j.neubiorev.2013.12.004 PMID: 24374381
- Sowell E.R., Peterson B.S., Kan E. et al. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb. Cortex. 2007; 17(7): 1550-60. doi: 10.1093/cercor/bhl066 PMID: 16945978
- Wilke M., Holland S.K., Krageloh-Mann I. Global, regional and local development of gray and white matter volume in normal children. Exp. Brain Res. 2007; 178(3): 296-307. doi: 10.1007/s00221-006-0732-z PMID: 17051378
- Heymsfield S.B., Chirachariyavej T., Rhyu I.J. et al. Differences between brain mass and body weight scaling to height: potential mechanism of reduced mass-specific resting energy expenditure of taller adults. J. Appl. Physiol. 2009; 106: 40–48. doi: 10.1152/japplphysiol.91123.2008 PMID: 19008483 11. Ho K.C., Roessmann U., Straumfjord J.V., Monroe G. Analysis of brain weight. II. Adult brain weight in relation to body height, weight, and surface area. Arch. Pathol. Lab. Med. 1980; 104(12): 640-5. PMID: 6893660 12. Koh I., Lee M.S., Lee N.J. et al. Body size effect on brain volume in Korean youth. Neuroreport. 2005; 16(18): 2029-32. PMID: 16317348
- Zaidi Z.F. Gender differences in human brain: a review. The Open Anatomy Journal 2010; 2: 37-55. doi: 10.2174/1877609401002010037
- Castellanos F.X., Lee P.P., Sharp W. et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002; 288(14): 1740-1748. doi: 10.1001/jama.288.14.1740 PMID: 12365958
- Sowell E.R., Thompson P.M., Welcome S.E. et al. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003; 362: 1699-707. doi: 10.1016/S0140-6736(03)14842-8 PMID: 14643117
- Huttenlocher P.R. Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Res. 1979; 163: 195-205. PMID: 427544
- Giedd J.N., Snell J.W., Lange N. et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb. Cortex. 1996; 6: 551-560. PMID: 8670681 18. Abitz M., Nielsen R.D., Jones E.G. et al. Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cereb. Cortex. 2007; 17(11): 2573-8. doi: 10.1093/cercor/bhl163 PMID: 17218480
- Lebel C., Walker L., Leemans A. et al. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008; 40: 1044-1055. doi: 10.1016/j.neuroimage.2007.12.053 PMID: 18295509
- Bartzokis G., Beckson M., Lu P.H. et al. Age-related changes in frontal and temporal lobe volumes in men. Arch. Gen. Psychiatry. 2001; 58: 461-465. doi: 10.1001/archpsyc.58.5.461 PMID: 11343525 21. Wang Y., Adamson C., Yuan W. et al. Sex differences in white matter development during adolescence: a DTI study. Brain Res. 2012; 1478: 1-15. doi: 10.1016/j.brainres.2012.08.038 PMID: 22954903 22. de Bellis M.D., Keshavan M.S., Beers S.R. et al. Sex differences in brain maturation during childhood and adolescence. Cereb. Cortex. 2001; 11(6): 552-7. doi: 10.1093/cercor/11.6.552 PMID: 11375916
- Pavlov A.V. [Gender differences in aging involution of mammillary bodies of human hypothalamus]. Fundamental'nye issledovaniya. 2013; 5(1): 120-123. (In Russ.).
- Yücel M., Stuart G.W., Maruff P. et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb. Cortex. 2001;11: 17-25. PMID: 11113032
- Caviness V.S., Kennedy D.N., Richeime C. et al. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb. Cortex. 1996; 6: 726-736. PMID: 8921207
- Bogolepova I.N., Antiukhov A.D. [Peculiarities of structural organization of amygdala basolateral nucleus in the brain of men and women]. Morfologiya. 2015; N2: 17-20. (In Russ.). PMID: 26234034
- Bogolepova I.N., Malofeeva L.I., Agapov P.A., Malofeeva I.G. [Morphometric studies of citoarchitecture of prefrontal cortex of female brain]. Fundamental'nye issledovaniya. 2015; 2-25: 5583-5587. (In Russ.).
- Eluvathingal T.J., Hasan K.M., Kramer L., et al. Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cerebr. Cortex 2007;17(12):2760-2768. doi: 10.1093/cercor/bhm003 PMID: 17307759 29. Kim H.J., Kim N., Kim S., et al. Sex differences in amygdala subregions: evidence from subregional shape analysis. Neuroimage. 2012; 60(4): 2054-61. doi: 10.1016/j.neuroimage.2012.02.025 PMID: 22374477 30. Brun C.C., Lepore N., Luders E., et al. Sex differences in brain structure in auditory and cingulate regions. Neuroreport. 2009; 20(10): 930-5. PMID: 19562831 31. Amunts K., Armstrong E., Malikovic A. et al. Gender-specific left-right asymmetries in human visual cortex. J Neurosci. 2007; 27(6): 1356-64. doi: 10.1523/JNEUROSCI.4753-06.2007 PMID: 17287510 32. Malofeeva L.I., Bogolepova I.N. [Gender-related peculiarities of cytoarchitecture of speech-motor fields 44 and 45]. Morfologiya. 2011; 140(6): 19-24. (In Russ.). 33. Gur R.C., Gunning-Dixon F., Bilker W.B., Gur R.E. Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb. Cortex. 2002; 12(9): 998-1003. PMID: 12183399 34. Mann S.L., Hazlett E.A., Byne W. et al. Anterior and posterior cingulate cortex volume in healthy adults: effects of aging and gender differences. Brain Res. 2011; 1401: 18-29. doi: 10.1016/j.brainres.2011.05.050 PMID: 21669408
- Gundel H., Lopez-Sala A., Ceballos-Baumann A.O. et al. Alexithymia correlates with the size of the right anterior cingulate. Psychosomatic Medicine. 2004; 66: 132-140. PMID: 14747647 36. Pujol J., López A., Deus J. et al. Anatomical variability of the anterior cingulate gyrus and basic dimensions of human personality. Neuroimage. 2002; 15(4): 847-55. doi: 10.1006/nimg.2001.1004 PMID: 11906225
- den Braber A., van ‘t Ent D., Stoffers D. et al. Sex differences in gray and white matter structure in age-matched unrelated males and females and opposite-sex siblings. Int. J. Psycholog. Res. 2013; 6: 7-21. doi: 10.1006/nimg.2001.1004
- PMID: 11906225 38. Ingalhalikar M., Smith A., Parker D. et al. Sex differences in the structural connectome of the human brain. Proc. Natl. Acad. Sci. USA. 2014; 111(2): 823-8. doi: 10.1073/pnas.1316909110 PMID: 24297904 39. Inano S., Takao H., Hayashi N. et al. Effects of age and gender on white matter integrity. Am. J. Neuroradiol. 2011; 32(11): 2103-9. doi: 10.3174/ajnr.A2785 PMID: 21998104
- Kanaan R.A., Allin M., Picchioni M. et al. Gender Differences in White Matter Microstructure. PLoS ONE. 2012; 7(6): e38272. doi: 10.1371/journal.pone.0038272 PMID: 22701619