The migration of multipotent mesenchymal stromal cells after systemic and local administration in an experimental model of Parkinson’s disease
- Authors: Zafranskaya M.M.1,2, Nizhegorodova D.B.1,2, Aleynikova N.E.1, Kuznetsova T.E.2,3, Vanslav M.I.1, Ignatovich T.V.1, Boiko A.V.1, Ponomarev V.V.1
-
Affiliations:
- Belarusian Medical Academy of Postgraduate Education
- International Sakharov Environmental Institute of the Belarusian State University
- Institute of Physiology of the National Academy of Sciences of Belarus
- Issue: Vol 13, No 2 (2019)
- Pages: 32-40
- Section: Original articles
- Submitted: 25.06.2019
- Published: 25.06.2019
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/589
- DOI: https://doi.org/10.25692/ACEN.2019.2.4
- ID: 589
Cite item
Full Text
Abstract
Parkinson’s disease is an important medico-social problem worldwide, with a lot of attention paid to preclinical studies to assess the efficacy of new treatments, including cell therapy.
Study objective. To assess the migratory ability of multipotent mesenchymal stromal cells (MMSC) using different methods of administration in an experimental model of Parkinson’s disease in laboratory rats.
Materials and methods. MMSC, stained with the PKH26 fluorescent dye, were systemically (intravenously) or locally (intranasally and intrathecally) administered to experimental animals with rotenone-induced Parkinson’s disease. The migratory ability of MMSC was assessed on days 1 and 21 after administration, using immunofluorescence microscopy.
Results. The migratory ability of MMSC after both systemic and local administration was more pronounced in the animal group with the experimental model of Parkinson’s disease compared with the control group. It was characterized by maximum accumulation of cells in the brain on the first day after administration, with viability preserved in the area of neuronal inflammation throughout 21 days.
Conclusion. Local administration (intranasal and intrathecal) leads to faster accumulation of MMSC in the brain of both the animals with the experimental model of Parkinson’s disease and healthy rats. Intravenous administration of cell cultures also helps to reveal the migratory properties of MMSC and can form the basis for planning further studies of cell therapy in Parkinson’s disease.
About the authors
Marina M. Zafranskaya
Belarusian Medical Academy of Postgraduate Education; International Sakharov Environmental Institute of the Belarusian State University
Author for correspondence.
Email: zafranskaya@gmail.ru
Belarus, Minsk
Daria B. Nizhegorodova
Belarusian Medical Academy of Postgraduate Education; International Sakharov Environmental Institute of the Belarusian State University
Email: zafranskaya@gmail.ru
Belarus, Minsk
Natalia E. Aleynikova
Belarusian Medical Academy of Postgraduate Education
Email: zafranskaya@gmail.ru
Belarus, Minsk
Tatiana E. Kuznetsova
International Sakharov Environmental Institute of the Belarusian State University; Institute of Physiology of the National Academy of Sciences of Belarus
Email: zafranskaya@gmail.ru
Belarus, Minsk
Margarita I. Vanslav
Belarusian Medical Academy of Postgraduate Education
Email: zafranskaya@gmail.ru
Belarus, Minsk
Tatiana V. Ignatovich
Belarusian Medical Academy of Postgraduate Education
Email: zafranskaya@gmail.ru
Belarus, Minsk
Alexander V. Boiko
Belarusian Medical Academy of Postgraduate Education
Email: zafranskaya@gmail.ru
Belarus, Minsk
Vladimir V. Ponomarev
Belarusian Medical Academy of Postgraduate Education
Email: zafranskaya@gmail.ru
Belarus, Minsk
References
- Obeso J.A., Stamelou M., Goetz C.G. et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord 2017; 32: 1264–1310. doi: 10.1002/mds.27115. PMID: 28887905.
- Rizek P., Kumar N., Jog M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016; 188: 1157–1165. doi: 10.1503/cmaj.151179. PMID: 27221269.
- AlDakheel A., Kalia L.V., Lang A.E. Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics 2014; 11: 6–23. doi: 10.1007/s13311-013-0218-1. PMID: 24085420.
- Stocchi F., Olanow C.W. Obstacles to the development of a neuroprotective therapy for Parkinson's disease. Mov Disord 2013; 28: 3–7. doi: 10.1002/mds.25337. PMID: 23390094.
- Shen Y., Huang J., Liu L. et al. A compendium of preparation and application of stem cells in Parkinson's disease: current status and future prospects. Front Aging Neurosci 2016; 8: 117. doi: 10.3389/fnagi.2016.00117. PMID: 27303288.
- Földes A., Kádár K., Kerémi B. et al. Mesenchymal stem cells of dental origin-their potential for anti-inflammatory and regenerative actions in brain and gut damage. Curr Neuropharmacol 2016; 14 (8): 914–934. doi: 10.2174/1570159X14666160121115210. PMID: 26791480.
- Hasan A., Deeb G., Rahal R. et al. Mesenchymal stem cells in the treatment of traumatic brain injury. Front Neurol 2017; 8: 28. doi: 10.3389/fneur.2017.00028. PMID: 28265255.
- Shall G., Menosky M., Decker S. et al. Effects of passage number and differentiation protocol on the generation of dopaminergic neurons from rat bone marrow-derived mesenchymal stem cells. Int J Mol Sci 2018; 19: E720. doi: 10.3390/ijms19030720. PMID: 29498713.
- Zhang Z., Alexanian A.R. The neural plasticity of early-passage human bone marrow-derived mesenchymal stem cells and their modulation with chromatin-modifying agents. J Tissue Eng Regen Med 2012; 8: 407–413. doi: 10.1002/term.1535. PMID: 22674835.
- Bae K.S., Park J.B., Kim H.S. et al. Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei Med J 2011; 52: 401–412. doi: 10.3349/ymj.2011.52.3.401. PMID: 21488182.
- Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells — current trends and future prospective. Biosci Rep 2015; 35: e00191. doi: 10.1042/BSR20150025. PMID: 25797907.
- Gu Y., Zhang Y., Bi Y. et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain 2015; 8: 65. doi: 10.1186/s13041-015-0157-3. PMID: 26475712.
- Mesentier-Louro L.A., Zaverucha-do-Valle C., da Silva-Junior A.J. et al. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 2014; 9: e110722. doi: 10.1371/journal.pone.0110722. PMID: 25347773.
- Perasso L., Cogo C.E., Giunti D. et al. Systemic administration of mesenchymal stem cells increases neuron survival after global cerebral ischemia in vivo (2VO). Neural Plast 2010; 2010: 534925. doi: 10.1155/2010/534925. PMID: 21331297.
- Samsonraj R.M., Raghunath M., Nurcombe V. et al. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017; 6: 2173–2185. doi: 10.1002/sctm.17-0129. PMID: 29076267.
- Rohban R., Pieber T.R. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017; 2017: 5173732. doi: 10.1155/2017/5173732. PMID: 28286525.
- Yan K., Zhang R., Sun C. et al. Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation. PLoS One 2013; 8: e84116. doi: 10.1371/journal.pone.0084116. PMID: 24391898.
- Jose S., Tan S.W., Ooi Y.Y. et al. Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels. J Neuroinflammation 2014; 11: 149. doi: 10.1186/s12974-014-0149-8. PMID: 25182840.
- Oh S.H., Kim H.N., Park H.J. et al. Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-mediated endocytosis in a parkinsonian model. Cell Rep 2016; 14: 835–849. doi: 10.1016/j.celrep.2015.12.075. PMID: 26776513.
- Drago D., Cossetti C., Iraci N. et al. The stem cell secretome and its role in brain repair. Biochimie 2013; 95: 2271–2285. doi: 10.1016/j.biochi.2013.06.020. PMID: 23827856.
- Zafranskaya M.M., Nizheharodava D.B., Yurkevich M.Y. et al. In vitro assessment of mesenchymal stem cells immunosuppressive potential in multiple sclerosis patients. Immunol Lett 2013; 149: 9–18. doi: 10.1016/j.imlet.2012.10.010. PMID: 23089549.
- Coulson-Thomas V.J., Coulson-Thomas Y.M., Gesteira T.F., Kao W.W. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system. Ocul Surf 2016; 14: 121–134. doi: 10.1016/j.jtos.2015.11.004. PMID: 26804815.
- Leyendecker A.Jr., Pinheiro C.C.G., Amano M.T., Bueno D.F. The use of human mesenchymal stem cells as therapeutic agents for the in vivo treatment of immune-related diseases: a systematic review. Front Immunol 2018; 9: 2056. doi: 10.3389/fimmu.2018.02056. PMID: 30254638.
- Teixeira F.G., Carvalho M.M., Sousa N., Salgado A.J. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70: 3871–3882. doi: 10.1007/s00018-013-1290-8. PMID: 23456256.
- Koniusz S., Andrzejewska A., Muraca M. et al. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 2016; 10: 109. doi: 10.3389/fncel.2016.00109. PMID: 27199663.
- Malinovskaya N.A., Gasymly E.D., Baglaeva O.V. et al. [Experimental rotenone models of Parkinson disease in rats]. Sbornik nauchnykh trudov SWorld 2012; 43: 57–61. (In Russ.)
- Sherer T.B., Betarbet R., Testa C.M. et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 2003; 23: 10756–10764. doi: 10.1523/JNEUROSCI.23-34-10756.2003. PMID: 14645467.
- Samantaray S., Knaryan V.H., Guyton M.K. et al. The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 2007; 146: 741–755. doi: 10.1016/j.neuroscience.2007.01.056. PMID: 17367952.
- Alam M., Schmidt W.J. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 2002; 136: 317–324. doi: 10.1016/S0166-4328(02)00180-8. PMID: 12385818.
- Paxinos G., Watson C. The rat brain in stereotaxic coordinates. Elsevier, 2004: 209 р.
- Sohni A., Verfaillie C.M. Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013: 130763. doi: 10.1155/2013/130763. PMID: 24194766.
- Honczarenko M., Le Y., Swierkowski M. et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030–1041. doi: 10.1634/stemcells.2005-0319. PMID: 16253981.
- Nitzsche F., Müller C., Lukomska B. Concise review: MSC adhesion cascade — insights into homing and transendothelial migration. Stem Cells 2017; 35: 1446–1460. doi: 10.1002/stem.2614. PMID: 28316123.
- De Becker A., Riet I.V. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 2016; 8: 73–87. doi: 10.4252/wjsc.v8.i3.73. PMID: 27022438.
- Yurkevich M.Yu., Pilotovich V.S., Zafranskaya M.M. et al. [Influence of multipotent mesenchymal stromal cells on acute renal failure course (experimental study)]. Innovatsionnye tekhnologii v meditsine 2016; 4(3–4): 142–153. (In Russ.)
- Hu J., Zhang L., Wang N., Ding R. et al. Mesenchymal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions. Kidney Int 2013; 84: 521–531. doi: 10.1038/ki.2013.114. PMID: 23615497.
- Zafranskaya M., Nizheharodava D., Yurkevich M. et al. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol 2013; 78: 455–462. doi: 10.1111/sji.12102. PMID: 23944654.