The role of micro-RNA in cerebrovascular disease

Cover Page

Cite item

Full Text


The article touches upon micro-RNA as new, potentially significant diagnostic, prognostic and therapeutic biomarkers in cerebrovascular pathology. Synthesis processes and effector mechanisms of micro-RNA are described. The micro-RNA that play an important role in the pathogenesis of major risk factors for cerebrovascular pathology (atherosclerosis, arterial hypertension, atrial fibrillation, diabetes mellitus) and the micro-RNA in acute cerebrovascular disorders are reviewed in detail. The need for thorough replication studies to justify the choice of micro-RNA and methods for micro-RNA detection is substantiated.

About the authors

Anton A. Raskurazhev

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow

Marine M. Tanashyan

Research Center of Neurology

Russian Federation, Moscow


  1. Zhou S.S., Jin J.P., Wang J.Q. et al. miRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39: 1073–1084. doi: 10.1038/aps.2018.30. PMID: 29877320.
  2. Raal F.J., Santos R.D., Blom D.J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double- blind, placebo-controlled trial. Lancet 2010; 375: 998–1006. doi: 10.1016/S0140-6736(10)60284-X. PMID: 20227758.
  3. Flynt A.S., Lai E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008; 9: 831–842. doi: 10.1038/nrg2455. PMID: 18852696.
  4. Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15: 509–24. doi: 10.1038/nrm3838. PMID: 25027649.
  5. Tiedt S., Dichgans M. Role of non-coding RNAs in stroke. Stroke 2018; 49: 3098–3106. doi: 10.1161/STROKEAHA.118.021010. PMID: 30571439.
  6. Reid G., Kirschner M.B., van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2011; 80: 193–208. doi: 10.1016/j.critrevonc.2010.11.004. PMID: 21145252.
  7. Schöler N., Langer C., Döhner H. et al. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 2010; 38: 1126–1130. doi: 10.1016/j.exphem.2010.10.004. PMID: 20977925.
  8. Valadi H., Ekstrom K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659. doi: 10.1038/ncb1596. PMID: 17486113.
  9. Lawrie C.H., Gal S., Dunlop H.M. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672–675. doi: 10.1111/j.1365-2141.2008.07077.x. PMID: 18318758.
  10. Wang G.K., Zhu J.Q., Zhang J.T. et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010; 31: 659–666. doi: 10.1093/eurheartj/ehq013. PMID: 20159880.
  11. Mick E., Shah R., Tanriverdi K. et al. Stroke and circulating extracellular RNAs. Stroke 2017; 48: 828–834. doi: 10.1161/STROKEAHA.116.015140. PMID: 28289238.
  12. Verdura E., Hervé D., Bergametti F. et al. Disruption of a miR-29 binding site leading to COL4A1 upregulation causes pontine autosomal dominant microangiopathy with leukoencephalopathy. Ann Neurol 2016; 80: 741–753. doi: 10.1002/ana.24782. PMID: 27666438.
  13. Feinberg M.W., Moore K.J. MicroRNA regulation of atherosclerosis. Circ Res 2016; 118: 703–720. doi: 10.1161/CIRCRESAHA.115.306300. PMID: 26892968.
  14. Luo X., Yang B., Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol 2015; 12: 80–90. doi: 10.1038/nrcardio.2014.178. PMID: 25421165.
  15. Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317–325. doi: 10.1038/nature10146. PMID: 215963864.
  16. Dávalos A., Goedeke L., Smibert P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108: 9232–9237. doi: 10.1073/pnas.1102281108. PMID: 21576456.
  17. Najafi-Shoushtari S.H., Kristo F., Li Y. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328: 1566–1569. doi: 10.1126/science.1189123. PMID: 20466882.
  18. Rayner K.J., Esau C.C., Hussain F.N. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478: 404–407. doi: 10.1038/nature10486. PMID: 22012398.
  19. Ouimet M., Ediriweera H.N., Gundra U.M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015; 125: 4334–4348. doi: 10.1172/JCI81676. PMID: 26517695.
  20. Goedeke L., Rotllan N., Canfran-Duque A. et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 2015; 21: 1280–1289. doi: 10.1038/nm.3949. PMID: 26437365.
  21. Ramirez C.M., Davalos A., Goedeke L. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2011; 31: 2707–2714. doi: 10.1161/ATVBAHA.111.232066. PMID: 21885853.
  22. Sun D., Zhang J., Xie J. et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 2012; 586: 1472–1479. doi: 10.1016/j.febslet.2012.03.068. PMID: 22673513.
  23. Kim J., Yoon H., Ramirez C.M. et al. MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol 2012; 235: 476–483. doi: 10.1016/j.expneurol.2011.11.010. PMID: 22119192.
  24. Ramirez C.M., Rotllan N., Vlassov A.V. et al. Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ Res 2013; 112: 1592–1601. doi: 10.1161/CIRCRESAHA.112.300626. PMID: 23519695.
  25. Schober A., Nazari-Jahantigh M., Wei Y. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20: 368–376. doi: 10.1038/nm.3487. PMID: 24584117.
  26. Fang Y., Davies P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32: 979–987. doi: 10.1161/ATVBAHA.111.244053. PMID: 22267480.
  27. Daniel J.M., Penzkofer D., Teske R. et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res 2014; 103: 564–572. doi: 10.1093/cvr/cvu162. PMID: 25020912.
  28. Hinkel R., Penzkofer D., Zuhlke S. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 2013; 128: 1066–1075. doi: 10.1161/CIRCULATIONAHA.113.001904. PMID: 23897866.
  29. Ceolotto G., Papparella I., Bortoluzzi A. et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24: 241–246. doi: 10.1038/ajh.2010.211. PMID: 20966899.
  30. Li S., Zhu J., Zhang W. et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124: 175–184. doi: 10.1161/CIRCULATIONAHA.110.012237. PMID: 21690488.
  31. Wei Z., Biswas N., Wang L. et al. A common genetic variant in the 3'-UTR of vacuolar H+-ATPase ATP6V0A1 creates a micro-RNA motif to alter chromogranin A processing and hypertension risk. Circ Cardiovasc Genet 2011; 4: 381–389. doi: 10.1161/CIRCGENETICS.111.959767. PMID: 21558123.
  32. Marques F.Z., Campain A.E., Tomaszewski M. et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011; 58: 1093–1098. doi: 10.1161/HYPERTENSIONAHA.111.180729. PMID: 22042811.
  33. Wang Z., Lu Y., Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 2011; 89: 710–721. doi: 10.1093/cvr/cvq350. PMID: 21051420.
  34. Weber M., Baker M.B., Moore J.P., Searles C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 2010; 393: 643–648. doi: 10.1016/j.bbrc.2010.02.045. PMID: 20153722.
  35. Zampetaki A., Kiechl S., Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810–817. doi: 10.1161/CIRCRESAHA.110.226357. PMID: 20651284.
  36. Zampetaki A., Kiechl S., Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810–817. doi: 10.1161/CIRCRESAHA.110.226357. PMID: 20651284.
  37. Kong L., Zhu J., Han W. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48: 61–69. doi: 10.1007/s00592-010-0226-0. PMID: 20857148.
  38. Koutsis G., Siasos G., Spengos K. The emerging role of microRNA in stroke. Curr Top Med Chem 2013; 13: 1573–1588. PMID: 23745809.
  39. Jeyaseelan K., Lim K.Y., Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008; 39: 959–966. doi: 10.1161/STROKEAHA.107.500736. PMID: 18258830.
  40. Harraz M.M., Eacker S.M., Wang X. et al. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 2012; 109: 18962–18967. doi: 10.1073/pnas.1121288109. PMID: 23112146.
  41. Verma P., Augustine G.J., Ammar M.R. et al. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci 2015; 18: 379–385. doi: 10.1038/nn.3935. PMID: 25643297.
  42. Caballero-Garrido E., Pena-Philippides J.C., Lordkipanidze T. et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 2015; 35: 12446–12464. doi: 10.1523/JNEUROSCI.1641-15.2015. PMID: 26354913.
  43. Xi T., Jin F., Zhu Y. et al. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 2017; 494: 144–151. doi: 10.1016/j.bbrc.2017.10.064. PMID: 29042193.
  44. Mick E., Shah R., Tanriverdi K. et al. Stroke and circulating extracellular RNAs. Stroke 2017; 48: 828–834. doi: 10.1161/STROKEAHA.116.015140. PMID: 28289238.
  45. Khoshnam S.E., Winlow W., Farbood Y. et al. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19(2): 166–187. doi: 10.5853/jos.2016.01368. PMID: 28480877.
  46. Tian C., Li Z. Yang Z. et al. Plasma microRNA-16 is a biomarker for diagnosis, stratification, and prognosis of hyperacute cerebral infarction. PLoS One 2016; 11: e0166688. doi: 10.1371/journal.pone.0166688. PMID: 27846323.
  47. Leung L.Y., Chan C.P., Leung Y.K. et al. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta 2014; 433: 139–144. doi: 10.1016/j.cca.2014.03.007. PMID: 24650689.
  48. Tiedt S., Prestel M., Malik R. et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res 2017; 121: 970–980. doi: 10.1161/CIRCRESAHA.117.311572. PMID: 28724745.

Supplementary files

Supplementary Files

Copyright (c) 2019 Raskurazhev A.A., Tanashyan M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies