The effect of modifiable stroke risk factors on systemic thrombolytic therapy in patients with acute stroke

Cover Page


Cite item

Full Text

Abstract

Introduction. Systemic thrombolytic therapy (STT) is an effective and accessible method of reperfusion treatment for ischaemic stroke. However, it is not yet evident how the risk factors preceding ischaemic stroke affect disease progression and outcome, as well as the efficacy of STT.

The study aimed to examine the results of STT in stroke patients, depending on their risk factors, severity of those risk factors, and the success in managing them at the prehospital stage.

Materials and methods. We examined 229 patients who underwent SST, of whom 201 survived and 28 died. The presence of hypertension, type 2 diabetes mellitus, atrial fibrillation, or metabolic syndrome, as well as blood sugar level, lipid panel results, and body mass index were assessed.

Results. Ischaemic stroke subtype, the length of time from symptom onset to start of STT, or the presence of hypertension did not have a statistically significant effect on 28-day mortality. Patient age, NIHSS score, presence/absence of type 2 diabetes mellitus and atrial fibrillation, modified Rankin Scale score, blood sugar level, body mass index, and the presence of metabolic syndrome had a statistically significant influence on 28-day mortality. Data from the survived 201 patients were used to analyze the correlation between risk factors and functional recovery after ischaemic stroke. For patients with moderate and mild ischaemic stroke, statistically significant inverse correlations were found for age, blood sugar level, and body mass index.

Conclusion. An inverse correlation was found between 28-day mortality and age, severity of neurological impairment, blood sugar level at onset, body mass index, and the presence of the metabolic syndrome. The ‘obesity paradox’ was not identified in regard to survival, but patients with hypercholesterolemia had more significant regression of neurological symptoms and better functional recovery. Receiving statins and having a target cholesterol level were not found to have a positive effect on patient recovery in the first 28 days after disease onset, likely because of greater severity of the overall vascular disease.

About the authors

Sergey V. Kotov

M.F. Vladimirsky Moscow Regional Research and Clinical Institute

Author for correspondence.
Email: kotovsv@yandex.ru
Russian Federation, Moscow

Elena V. Isakova

M.F. Vladimirsky Moscow Regional Research and Clinical Institute

Email: kotovsv@yandex.ru
Russian Federation, Moscow

Inessa G. Kolchu

M.F. Vladimirsky Moscow Regional Research and Clinical Institute

Email: kotovsv@yandex.ru
Russian Federation, Moscow

Svetlana N. Belkina

M.F. Vladimirsky Moscow Regional Research and Clinical Institute

Email: kotovsv@yandex.ru
Russian Federation, Moscow

References

  1. Feigin V.L., Varakin Yu.Ya., Kravchenko M.A. et al. A new approach for stroke prevention in Russia. Annals of clinical and experimental neurology. 2015; 9(4): 19–23. (In Russ.)
  2. Caprio F.Z., Sorond F.A. Cerebrovascular disease: primary and secondary stroke prevention. Med Clin North Am. 2019; 103(2): 295–308. doi: 10.1016/j.mcna.2018.10.001. PMID: 30704682.
  3. Bluhmki E., Chamorro A., Dávalos A. et al. Stroke treatment with alteplase given 3.0–4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomized controlled trial. Lancet Neurol. 2009; 8(12): 1095–1102. doi: 10.1016/S1474-4422(09)70264-9. PMID: 19850525.
  4. Powers W.J., Rabinstein A.A., Ackerson T. et al. American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemic stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018; 49(3): e46–e110. doi: 10.1161/STR.0000000000000158. PMID: 29367334.
  5. Oesch L., Tatlisumak T., Arnold M., Sarikaya H. Obesity paradox in stroke — myth or reality? A systematic review. PLoS One. 2017; 12(3): e0171334. doi: 10.1371/journal.pone.0171334. PMID: 28291782.
  6. Alberti K.G., Zimmet P., Shaw J. et al. The metabolic syndrome — a new worldwide definition. Lancet. 2005; 366(9491): 1059–1062. doi: 10.1016/S0140-6736(05)67402-8. PMID: 16182882.
  7. Altman D.G. Practical statistics for medical research. London, 1991: 611.
  8. Logos T. Simple logistic regression on qualitative dichotomic variables. Statistic on aiR. 2009. URL: https://www.r-bloggers.com/simple-logistic-regression-on-qualitative-dichotomic-variables
  9. Adams H.P. Jr., Bendixen B.H., Kappelle L.J. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993; 24(1): 35–41. doi: 10.1161/01.str.24.1.35. PMID: 7678184.
  10. Kukharchuk VV. About the new version of recommendations for the correction of dyslipidemia in order to prevent atherosclerosis and its complications. The Journal of Atherosclerosis and Dyslipidemias. 2020; 1 (38): 5-6. doi: 10.34687/2219-8202.JAD.2020.01.0001 (In Russ.)
  11. Isakova E.V. Stroke. Manual / Eds. L.V. Stachovskaya, S.V. Kotov. Moscow, 2014: 397. (In Russ.)
  12. Tanashyan M.M., Lagoda O.V., Antonova K.V., Raskurazhev A.A. The main pathogenetic mechanisms of vascular cerebral pathology associated with atherosclerosis and metabolic syndrome: the search for correction approaches. Annals of clinical and experimental neurology. 2016; 10(2): 5–10. (In Russ.)
  13. Arboix A. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke. World J Clin Cases. 2015; 3(5): 418–429. doi: 10.12998/wjcc.v3.i5.418. PMID: 25984516.
  14. O'Donnell M.J., Chin S.L., Rangarajan S. et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016; 388(10046): 761–775. doi: 10.1016/S0140-6736(16)30506-2.
  15. Domashenko М.А., Maksimova М.Yu., Tanashyan М.М. Intravenous thrombolysis in ischemic stroke: clinical predictors of efficacy and safety. Annals of clinical and experimental neurology. 2019; 13(1): 5–14. (In Russ.) doi: 10.25692/ACEN.2019.1.1.
  16. Mehrpour M., Afrakhte M., Shojaei S.F. et al. Factors predicting the outcome of intravenous thrombolysis in stroke patients before rt-PA administration. Caspian J Intern Med. 2019; 10(4): 424–430. doi: 10.22088/cjim.10.4.424. PMID: 31814941.
  17. Kalashnikova M.F. Metabolic syndrome: a modern view on concept, prevention methods and treatment. Effective Pharmacotherapy. 2013; 52: 52–63. (In Russ.)
  18. Strazzullo P., D'Elia L., Cairella G. et al. Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke. 2010; 41(5): e418–е426. doi: 10.1161/STROKEAHA.109.576967. PMID: 20299666.
  19. Forlivesi S., Cappellari M., Bonetti B. Obesity paradox and stroke: a narrative review. Eat Weight Disord. 2020. doi: 10.1007/s40519-020-00876-w. PMID: 32124408.
  20. Towfighi A., Ovbiagele B. The impact of body mass index on mortality after stroke. Stroke. 2009; 40(8): 2704–2708. doi: 10.1161/STROKEAHA.109.550228. PMID: 19542056.
  21. Skolarus L.E., Sanchez B.N., Levine D.A. et al. Association of body mass index and mortality after acute ischemic stroke. Circ Cardiovasc Qual Outcomes. 2014; 7(1): 64–69. doi: 10.1161/CIRCOUTCOMES.113.000129. PMID: 24326935.
  22. Branscheidt M., Schneider J., Michel P. et al. No impact of body mass index on outcome in stroke patients treated with IV thrombolysis BMI and IV thrombolysis outcome. PLoS One. 2016; 11(10): e0164413. doi: 10.1371/journal.pone.0164413. PMID: 27727305.
  23. Hassan A.E., Chaudhry S.A., Jani V. et al. Is there a decreased risk of intracerebral hemorrhage and mortality in obese patients treated with intravenous thrombolysis in acute ischemic stroke? J Stroke Cerebrovasc Dis. 2013; 22(4): 545–549. doi: 10.1016/j.jstrokecerebrovasdis.2013.01.022. PMID: 23453555.
  24. Liu C., Yang X., Chen C. Correlation between metabolic syndrome and intracranial versus extracranial arteriosclerosis among chinese patients with stroke. Iran J Public Health. 2019; 48(11): 1997–2006. PMID: 31970098.
  25. Kozakova M., Natali A., Dekker J. et al. Insulin sensitivity and carotid intima-media thickness: relationship between insulin sensitivity and cardiovascular risk study. Arterioscler Thromb Vasc Biol. 2013; 33(6): 1409–1147. doi: 10.1161/ATVBAHA.112.300948. PMID: 23599442.
  26. Ji X., Leng X.Y., Dong Y. et al. Modifiable risk factors for carotid atherosclerosis: a meta-analysis and systematic review. Ann Transl Med. 2019; 7(22): 632. doi: 10.21037/atm.2019.10.115. PMID: 31930033.
  27. Bang O.Y., Saver J.L., Liebeskind D.S. et al. Impact of metabolic syndrome on distribution of cervicocephalic atherosclerosis: data from a diverse race-ethnic group. J Neurol Sci. 2009; 284(1–2): 40–45. doi: 10.1016/j.jns.2009.03.033. PMID: 19398114.
  28. Asahi M., Huang Z., Thomas S. et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J Cereb Blood Flow Metab. 2005; 25(6): 722–729. doi: 10.1038/sj.jcbfm.9600070. PMID: 15716855.
  29. Goldstein L.B. Statins and ischemic stroke severity: cytoprotection. Curr Atheroscler Rep. 2009; 11(4): 296–300. doi: 10.1007/s11883-009-0045-3. PMID: 19500493.
  30. Arboix A., García-Eroles L., Oliveres M. et al. Pretreatment with statins improves early outcome in patients with first-ever ischaemic stroke: a pleiotropic effect of statins or a beneficial effect of hypercholesterolemia? BMC Neurol. 2010; 10: 47. doi: 10.1186/1471-2377-10-47. PMID: 20565890.
  31. Choi J.C., Lee J.S., Park T.H. et al. Effect of pre-stroke statin use on stroke severity and early functional recovery: a retrospective cohort study. BMC Neurol. 2015; 15: 120. doi: 10.1186/s12883-015-0376-3. PMID: 26224123.
  32. Martínez-Sánchez P., Fuentes B., Martínez-Martínez M. et al. Treatment with statins and ischemic stroke severity: does the dose matter? Neurology. 2013; 80(19): 1800–1805. doi: 10.1212/WNL.0b013e3182918d38. PMID: 23596066.
  33. Jang M.U., Kang J., Kim B.J. et al. In-hospital and post-discharge recovery after acute ischemic stroke: a nationwide multicenter stroke registry-base study. J Korean Med Sci. 2019; 34(36): e240. doi: 10.3346/jkms.2019.34.e240. PMID: 31538419.
  34. Koton S., Molshatzki N., Bornstein N.M., Tanne D. Low cholesterol, statins and outcomes in patients with first-ever acute ischemic stroke. Cerebrovasc Dis. 2012; 34(3): 213–220. doi: 10.1159/000342302. PMID: 23006641.
  35. Dong S., Guo J., Fang J. et al. Low-dose statin pretreatment reduces stroke severity and improves functional outcomes. J Neurol. 2019; 266(12): 2970–2978. doi: 10.1007/s00415-019-09520-9. PMID: 31468121.
  36. Tziomalos K., Giampatzis V., Bouziana S.D. et al. Comparative effects of more versus less aggressive treatment with statins on the long-term outcome of patients with acute ischemic stroke. Atherosclerosis. 2015; 243(1): 65–70. doi: 10.1016/j.atherosclerosis.2015.08.043. PMID: 26355807.
  37. Hong K.S., Lee J.S. Statins in acute ischemic stroke: a systematic review. J Stroke. 2015; 17(3): 282–301. doi: 10.5853/jos.2015.17.3.282. PMID: 26437994.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kotov S.V., Isakova E.V., Kolchu I.G., Belkina S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies