Does gender influence the clinical characteristics of ischaemic stroke in patients aged 45–74 years?

Cover Page

Cite item

Full Text


Introduction. Modern studies seek to determine how age and gender affect morbidity and mortality, risk factors, causes, disease severity, and functional brain recovery after ischaemic stroke.

The study aimed to investigate the effect of gender on the main clinical characteristics of carotid territory infarction in patients aged 45–74 years who did not undergo thrombolysis or mechanical thrombectomy.

Materials and methods. We examined 124 patients: 77 (62.1%) men and 47 (37.9%) women of middle age and older, with carotid territory infarction, who were admitted to the Research Center of Neurology in the first 48 hours after neurological symptom onset. The ischaemic stroke subtype, stroke severity, level of functional dependence, and level of daily and motor activity in patients were established.

Results. In our group, women were older than men by 4 years on average (p = 0.018). The mean female age was 67 years (58–71 years), while the mean male age was 63 years (58–66 years). Women were more often diagnosed with cardioembolic stroke, while men were more often diagnosed with an atherothrombotic stroke. Ipsilateral internal carotid artery stenosis >50% and left ventricular hypertrophy were more common in men than women, while left atrial dilation was more common in women. No significant differences were found between the two genders in the clinical presentation, acute stroke severity, and functional brain recovery.

Conclusion. In middle and older age patients, gender does not affect ischaemic stroke morbidity and rate of functional brain recovery by the end of the acute stroke period.

About the authors

Marina Yu. Maksimova

Research Center of Neurology

Russian Federation, Moscow

Aleksandra S. Airapetova

Research Center of Neurology

Author for correspondence.
Russian Federation, Moscow


  1. Suslina Z.A., Gulevskaya T.S., Maksimova M.Yu., Morgunov V.A. [Cerebral circulation disorders: diagnosis, treatment, prevention]. Moscow, 2016. 536 p. (In Russ.)
  2. Piradov M.A., Tanashyan M.M., Maksimova M.Yu. (eds.) [Stroke: modern diagnostic and treatment technologies]. Moscow, 2018. 360 p. doi: 10.24421/MP.2018.18.15909. (In Russ.)
  3. Piradov M.A., Maksimova M.Yu., Tanashyan M.M. [Stroke: step by step instructions. A guide for doctors]. Moscow, 2020. 288 p. doi: 10.33029/9704-5782-5-STR2-2020-1-288. (In Russ.)
  4. West L.A., Cole S., Goodkind D., He W. 65+ in the United States: 2010. Washington, 2010: 23–212.
  5. Asplund K., Karvanen J., Giampaoli S. et al. Relative risks for stroke by age, sex, and population based on follow-up of 18 European populations in the MORGAM Project. Stroke. 2009; 40(7): 2319–2326. doi: 10.1161/STROKEAHA.109.547869. PMID: 19520994.
  6. Murphy S.J., McCullough L.D., Smith J.M. Stroke in the female: role of biological sex and estrogen. ILAR J. 2004; 45(2): 147–159. doi: 10.1093/ilar.45.2.147. PMID: 15111734.
  7. Appelros P., Stegmayr B., Terént A. Sex differences in stroke epidemiology: a systematic review. Stroke. 2009; 40(4): 1082–1090. doi: 10.1161/STROKEAHA.108.540781. PMID: 19211488.
  8. Norris J.W., Zhu C.Z., Bornstein N.M., Chambers B.R. Vascular risks of asymptomatic carotid stenosis. Stroke. 1991; 22(12): 1485–1490. doi: 10.1161/01.str.22.12.1485. PMID: 1962321.
  9. Mozaffarian D., Benjamin E.J., Go A.S. et al. Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation. 2015; 131(4): e29–e322. doi: 10.1161/CIR.0000000000000152. PMID: 25520374.
  10. Lei C., Wu B., Liu M., Chen Y. Risk factors and clinical outcomes associated with intracranial and extracranial atherosclerotic stenosis acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014; 23(5): 1112–1117. doi: 10.1016/j.jstrokecerebrovasdis.2013.09.024. PMID: 24189455.
  11. de Weerd M., Greving J.P., de Jong A.W.F. et al. Prevalence of asymptomatic carotid artery stenosis according to age and sex systematic review and metaregression analysis. Stroke. 2009; 40(4): 1105–1113. doi: 10.1161/STROKEAHA.108.532218. PMID: 19246704.
  12. Rossouw J.E. Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovasc Res. 2002; 53(3): 550–¬7. doi: 10.1016/s0008-6363(01)00478-3. PMID: 11861025.
  13. Bots M.L., Breslau P.J., Briët E. et al. Cardiovascular determinants of carotid artery disease. The Rotterdam Elderly Study. Hypertension. 1992; 19(6 Pt 2): 717–720. doi: 10.1161/01.hyp.19.6.717. PMID: 1592472.
  14. Demarin V., Lisak M., Morović S., Čengić T. Low high-density lipoprotein cholesterol as the possible risk factor for stroke. Acta Clin Croat. 2010; 49(4): 429–439. PMID: 21830454.
  15. Wolf P.A., D’Agostino R.B., Kannel W.B. et al. Cigarette smoking as a risk factor for stroke: the Framingham Study. JAMA. 1988; 259(7): 1025–1029. PMID: 3339799.
  16. MacMahon S., Peto R., Collins R. et al. Blood pressure, stroke, and coronary heart disease: part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990; 335(8692): 765–774. doi: 10.1016/0140-6736(90)90878-9. PMID: 1969518.
  17. Bejot Y., Catteau A., Caillier M. et al. Trends in incidence, risk factors, and survival in symptomatic lacunar stroke in Dijon, France, from 1989 to 2006: a population-based study. Stroke. 2008; 39(7): 1945–1951. doi: 10.1161/STROKEAHA.107.510933. PMID: 18436869.
  18. Vermeer S.E., Koudstaal P.J., Oudkerk M. et al. Prevalence and risk factors of silent brain infarcts in the population- based Rotterdam Scan Study. Stroke. 2002; 33(1): 21–25. doi: 10.1161/hs0102.101629. PMID: 11779883.
  19. Arboix A., García-Eroles L., Massons J. et al. Lacunar infarcts in patients aged 85 years and older. Acta Neurol Scand. 2000; 101(1): 25–29. doi: 10.1034/j.1600-0404.2000.00005.x. PMID: 10660148.
  20. Arboix A., Blanco-Rojas L., Oliveres M. et al. Clinical characteristics of acute lacunar stroke in women: emphasis on gender differences. Acta Neurol Belg. 2014; 114(2): 107–12. doi: 10.1007/s13760-013-0257-8. PMID: 24194419.
  21. Lim H.S., Willoughby S.R., Schultz C. et al. Effect of atrial fibrillation on atrial thrombogenesis in humans: impact of rate and rhythm. J Am Coll Cardiol. 2013; 61(8): 852–860. doi: 10.1016/j.jacc.2012.11.046. PMID: 23333141.
  22. Fang M.C., Singer D.E., Chang Y. et al. Gender differences in the risk of ischemic stroke and peripheral embolism in atrial fibrillation the AnTicoagulation and Risk factors in Atrial fibrillation (ATRIA) study. Circulation. 2005; 112(12): 1687–1691. doi: 10.1161/CIRCULATIONAHA.105.553438. PMID: 16157766.
  23. Kelly-Hayes M., Beiser A., Kase C.S. et al. The influence of gender and age on disability following ischemic stroke: the Framingham study. J Stroke Cerebrovasc Dis. 2003; 12(3): 119–126. doi: 10.1016/S1052-3057(03)00042-9.
  24. Petrea R.E., Beiser A.S., Seshadri S. et al. Gender differences in stroke incidence and poststroke disability in the Framingham heart study. Stroke. 2009; 40(4): 1032–1037. doi: 10.1161/STROKEAHA.108.542894. PMID: 17903915.
  25. Adams H.P., Bendixen B.H., Kappelle L.J. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993; 24: 35–41. PMID: 7678184.
  26. Fussner J., Velasco C. Stroke Coordinator Boot Camp. Assessing Stroke — Scores and Scales — American Heart Association. URL:
  27. Wang T.J., Massaro J.M., Levy D. et al. A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: The Framingham Heart Study. JAMA. 2003; 290: 1049–1056. doi: 10.1001/jama.290.8.1049. PMID: 12941677.
  28. Roger V.L., Go A.S., Lloyd-Jones D.M. et al. Executive summary: Heart disease and stroke statistics--2012 update: A report from the American Heart Association. Circulation. 2012; 125: 188–197. doi: 10.1161/CIR.0b013e3182456d46. PMID: 22215894.
  29. Reeves M.J., Fonarow G.C., Zhao X. et al. Quality of care in women with ischemic stroke in the GWTG program. Stroke. 2009; 40: 1127–1133. doi: 10.1161/STROKEAHA.108.543157. PMID: 19211482.
  30. Cordonnier C., Sprigg N., Sandset E.C. et al. Stroke in women — from evidence to inequalities. Nat Rev Neurol. 2017; 13(9): 521–532. doi: 10.1038/nrneurol.2017.95. PMID: 28731036.
  31. Roy-O'Reilly M., McCullough L.D. Age and sex are critical factors in ischemic stroke pathology. Endocrinology. 2018; 159(8): 3120–3131. doi: 10.1210/en.2018-00465. PMID: 30010821.
  32. Maksimova M.Yu., Chechetkin А.O., Moskvicheva A.S., Shabalina A.A. [Atherothrombotic stroke in women: blood thrombogenicity and the vascular wall]. Annals of clinical and experimental neurology. 2020; 14(1): 25–32. doi: 10.25692/ACEN.2020.1.3. (In Russ.)
  33. McDermott M., Lisabeth L.D., Baek J. et al. Sex disparity in stroke quality of care in a community-based study. J Stroke Cerebrovasc Dis. 2017; 26(8): 1781–1786. doi: 10.1016/j.jstrokecerebrovasdis.2017.04.006. PMID: 28479182.
  34. Chalos V., de Ridder I.R., Lingsma H.F. et al. Does sex modify the effect of endovascular treatment for ischemic stroke? Stroke. 2019; 50(9): 2413–2419. doi: 10.1161/STROKEAHA.118.023743. PMID: 31412753.
  35. Sheth S.A., Lee S., Warach S.J. et al. Sex differences in outcome after endovascular stroke therapy for acute ischemic stroke. Stroke. 2019; 50(9): 2420–2427. doi: 10.1161/STROKEAHA.118.023867. PMID: 31412752
  36. Ullberg T., Zia E., Petersson J., Norrving B. Changes in functional outcome over the first year after stroke: an observational study from the Swedish stroke register. Stroke. 2015; 46(2): 389–394. doi: 10.1161/STROKEAHA.114.006538. PMID: 25538204.
  37. Nezu T., Hosomi N., Kondo K. et al. Greater severity of neurological defects in women admitted with atrial fibrillation-related stroke. Circ J. 2016; 80(1): 250–255. doi: 10.1253/circj.CJ-15-0873. PMID: 26511462.
  38. Peters S.A., Huxley R.R., Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet. 2014; 383(9933): 1973–1980. doi: 10.1016/S0140-6736(14)60040-4. PMID: 24613026.
  39. Yiin G.S., Howard D.P., Paul N.L. et al. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: A population-based study. Circulation. 2014; 130: 1236–1244. doi: 10.1161/CIRCULATIONAHA.114.010942. PMID: 25208551.
  40. Brambatti M., Connolly S.J., Gold M.R. et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014; 129: 2094–2099. doi: 10.1161/CIRCULATIONAHA.113.007825. PMID: 24633881.
  41. Disertori M., Quintarelli S., Grasso M. et al. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of natriuretic peptide precursor a. Circulation. Cardiovasc Genet. 2013; 6: 27–36. doi: 10.1161/CIRCGENETICS.112.963520. PMID: 23275345.
  42. O'Neal W.T., Kamel H., Kleindorfer D. et al. Premature atrial contractions on the screening electrocardiogram and risk of ischemic stroke: The reasons for geographic and racial differences in stroke study. Neuroepidemiology. 2016; 47: 53–58. doi: 10.1159/000448619. PMID: 27529786.
  43. Kamel H., Hunter M., Moon Y.P. et al. Electrocardiographic left atrial abnormality and risk of stroke: Northern Manhattan Study. Stroke. 2015; 46: 3208–3212. doi: 10.1161/STROKEAHA.115.009989. PMID: 26396031.
  44. Okin P.M., Kamel H., Kjeldsen S.E., Devereux R.B. Electrocardiographic left atrial abnormalities and risk of incident stroke in hypertensive patients with electrocardiographic left ventricular hypertrophy. J Hypertens. 2016; 34: 1831–1837. doi: 10.1097/HJH.000000000000098. PMID: 27254312.
  45. Kamel H., Okin P.M., Elkind M.S., Iadecola C. Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke. 2016; 47: 895–900. doi: 10.1161/STROKEAHA.115.012004. PMID: 26786114.
  46. Longstreth W.T. Jr., Kronmal R.A., Thompson J.L. et al. Amino terminal pro-b-type natriuretic peptide, secondary stroke prevention, and choice of antithrombotic therapy. Stroke. 2013; 44: 714–719. doi: 10.1161/STROKEAHA.112.675942. PMID: 23339958.
  47. Reynolds K., Lewis B., Nolen J.D. et al. Alcohol consumption and risk of stroke: a meta-analysis. JAMA. 2003; 289(5): 579–588. doi: 10.1001/jama.289.5.579. PMID: 12578491.
  48. Whisnant J.P., Homer D., Ingall T.J. et al. Duration of cigarette smoking is the strongest predictor of severe extracranial carotid artery atherosclerosis. Stroke. 1990; 21(5): 707–714. doi: 10.1161/01.str.21.5.707. PMID: 2339450.
  49. Peters S.A., Huxley R.R., Woodward M. Smoking as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 81 cohorts, including 3,980,359 individuals and 42,401 strokes. Stroke. 2013; 44(10): 2821–2828. doi: 10.1161/STROKEAHA.113.002342. PMID: 23970792.
  50. Maximova M.Yu., Sazonova V.Yu., Ayrapetova A.S. [Gender features in cerebrovascular disorders in different age groups]. Annals of clinical and experimental neurology. 2019; 13(3): 11–19. doi: 10.25692/ACEN.2019.3.2. (In Russ.)

Supplementary files

Supplementary Files

Copyright (c) 2021 Maksimova M.Y., Airapetova A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies