The role of micro-RNA in cerebrovascular disease

Cover Page


Cite item

Full Text

Abstract

The article touches upon micro-RNA as new, potentially significant diagnostic, prognostic and therapeutic biomarkers in cerebrovascular pathology. Synthesis processes and effector mechanisms of micro-RNA are described. The micro-RNA that play an important role in the pathogenesis of major risk factors for cerebrovascular pathology (atherosclerosis, arterial hypertension, atrial fibrillation, diabetes mellitus) and the micro-RNA in acute cerebrovascular disorders are reviewed in detail. The need for thorough replication studies to justify the choice of micro-RNA and methods for micro-RNA detection is substantiated.

About the authors

Anton A. Raskurazhev

Research Center of Neurology

Author for correspondence.
Email: rasckey@live.com
Россия, Moscow

Marine M. Tanashyan

Research Center of Neurology

Email: rasckey@live.com
Россия, Moscow

References

  1. Zhou S.S., Jin J.P., Wang J.Q. et al. miRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39: 1073–1084. doi: 10.1038/aps.2018.30. PMID: 29877320.
  2. Raal F.J., Santos R.D., Blom D.J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double- blind, placebo-controlled trial. Lancet 2010; 375: 998–1006. doi: 10.1016/S0140-6736(10)60284-X. PMID: 20227758.
  3. Flynt A.S., Lai E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008; 9: 831–842. doi: 10.1038/nrg2455. PMID: 18852696.
  4. Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15: 509–24. doi: 10.1038/nrm3838. PMID: 25027649.
  5. Tiedt S., Dichgans M. Role of non-coding RNAs in stroke. Stroke 2018; 49: 3098–3106. doi: 10.1161/STROKEAHA.118.021010. PMID: 30571439.
  6. Reid G., Kirschner M.B., van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2011; 80: 193–208. doi: 10.1016/j.critrevonc.2010.11.004. PMID: 21145252.
  7. Schöler N., Langer C., Döhner H. et al. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 2010; 38: 1126–1130. doi: 10.1016/j.exphem.2010.10.004. PMID: 20977925.
  8. Valadi H., Ekstrom K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659. doi: 10.1038/ncb1596. PMID: 17486113.
  9. Lawrie C.H., Gal S., Dunlop H.M. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672–675. doi: 10.1111/j.1365-2141.2008.07077.x. PMID: 18318758.
  10. Wang G.K., Zhu J.Q., Zhang J.T. et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010; 31: 659–666. doi: 10.1093/eurheartj/ehq013. PMID: 20159880.
  11. Mick E., Shah R., Tanriverdi K. et al. Stroke and circulating extracellular RNAs. Stroke 2017; 48: 828–834. doi: 10.1161/STROKEAHA.116.015140. PMID: 28289238.
  12. Verdura E., Hervé D., Bergametti F. et al. Disruption of a miR-29 binding site leading to COL4A1 upregulation causes pontine autosomal dominant microangiopathy with leukoencephalopathy. Ann Neurol 2016; 80: 741–753. doi: 10.1002/ana.24782. PMID: 27666438.
  13. Feinberg M.W., Moore K.J. MicroRNA regulation of atherosclerosis. Circ Res 2016; 118: 703–720. doi: 10.1161/CIRCRESAHA.115.306300. PMID: 26892968.
  14. Luo X., Yang B., Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol 2015; 12: 80–90. doi: 10.1038/nrcardio.2014.178. PMID: 25421165.
  15. Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317–325. doi: 10.1038/nature10146. PMID: 215963864.
  16. Dávalos A., Goedeke L., Smibert P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108: 9232–9237. doi: 10.1073/pnas.1102281108. PMID: 21576456.
  17. Najafi-Shoushtari S.H., Kristo F., Li Y. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328: 1566–1569. doi: 10.1126/science.1189123. PMID: 20466882.
  18. Rayner K.J., Esau C.C., Hussain F.N. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478: 404–407. doi: 10.1038/nature10486. PMID: 22012398.
  19. Ouimet M., Ediriweera H.N., Gundra U.M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015; 125: 4334–4348. doi: 10.1172/JCI81676. PMID: 26517695.
  20. Goedeke L., Rotllan N., Canfran-Duque A. et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 2015; 21: 1280–1289. doi: 10.1038/nm.3949. PMID: 26437365.
  21. Ramirez C.M., Davalos A., Goedeke L. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2011; 31: 2707–2714. doi: 10.1161/ATVBAHA.111.232066. PMID: 21885853.
  22. Sun D., Zhang J., Xie J. et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 2012; 586: 1472–1479. doi: 10.1016/j.febslet.2012.03.068. PMID: 22673513.
  23. Kim J., Yoon H., Ramirez C.M. et al. MiR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol 2012; 235: 476–483. doi: 10.1016/j.expneurol.2011.11.010. PMID: 22119192.
  24. Ramirez C.M., Rotllan N., Vlassov A.V. et al. Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ Res 2013; 112: 1592–1601. doi: 10.1161/CIRCRESAHA.112.300626. PMID: 23519695.
  25. Schober A., Nazari-Jahantigh M., Wei Y. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20: 368–376. doi: 10.1038/nm.3487. PMID: 24584117.
  26. Fang Y., Davies P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32: 979–987. doi: 10.1161/ATVBAHA.111.244053. PMID: 22267480.
  27. Daniel J.M., Penzkofer D., Teske R. et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res 2014; 103: 564–572. doi: 10.1093/cvr/cvu162. PMID: 25020912.
  28. Hinkel R., Penzkofer D., Zuhlke S. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 2013; 128: 1066–1075. doi: 10.1161/CIRCULATIONAHA.113.001904. PMID: 23897866.
  29. Ceolotto G., Papparella I., Bortoluzzi A. et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24: 241–246. doi: 10.1038/ajh.2010.211. PMID: 20966899.
  30. Li S., Zhu J., Zhang W. et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124: 175–184. doi: 10.1161/CIRCULATIONAHA.110.012237. PMID: 21690488.
  31. Wei Z., Biswas N., Wang L. et al. A common genetic variant in the 3'-UTR of vacuolar H+-ATPase ATP6V0A1 creates a micro-RNA motif to alter chromogranin A processing and hypertension risk. Circ Cardiovasc Genet 2011; 4: 381–389. doi: 10.1161/CIRCGENETICS.111.959767. PMID: 21558123.
  32. Marques F.Z., Campain A.E., Tomaszewski M. et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011; 58: 1093–1098. doi: 10.1161/HYPERTENSIONAHA.111.180729. PMID: 22042811.
  33. Wang Z., Lu Y., Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 2011; 89: 710–721. doi: 10.1093/cvr/cvq350. PMID: 21051420.
  34. Weber M., Baker M.B., Moore J.P., Searles C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 2010; 393: 643–648. doi: 10.1016/j.bbrc.2010.02.045. PMID: 20153722.
  35. Zampetaki A., Kiechl S., Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810–817. doi: 10.1161/CIRCRESAHA.110.226357. PMID: 20651284.
  36. Zampetaki A., Kiechl S., Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810–817. doi: 10.1161/CIRCRESAHA.110.226357. PMID: 20651284.
  37. Kong L., Zhu J., Han W. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48: 61–69. doi: 10.1007/s00592-010-0226-0. PMID: 20857148.
  38. Koutsis G., Siasos G., Spengos K. The emerging role of microRNA in stroke. Curr Top Med Chem 2013; 13: 1573–1588. PMID: 23745809.
  39. Jeyaseelan K., Lim K.Y., Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008; 39: 959–966. doi: 10.1161/STROKEAHA.107.500736. PMID: 18258830.
  40. Harraz M.M., Eacker S.M., Wang X. et al. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 2012; 109: 18962–18967. doi: 10.1073/pnas.1121288109. PMID: 23112146.
  41. Verma P., Augustine G.J., Ammar M.R. et al. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci 2015; 18: 379–385. doi: 10.1038/nn.3935. PMID: 25643297.
  42. Caballero-Garrido E., Pena-Philippides J.C., Lordkipanidze T. et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 2015; 35: 12446–12464. doi: 10.1523/JNEUROSCI.1641-15.2015. PMID: 26354913.
  43. Xi T., Jin F., Zhu Y. et al. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 2017; 494: 144–151. doi: 10.1016/j.bbrc.2017.10.064. PMID: 29042193.
  44. Mick E., Shah R., Tanriverdi K. et al. Stroke and circulating extracellular RNAs. Stroke 2017; 48: 828–834. doi: 10.1161/STROKEAHA.116.015140. PMID: 28289238.
  45. Khoshnam S.E., Winlow W., Farbood Y. et al. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19(2): 166–187. doi: 10.5853/jos.2016.01368. PMID: 28480877.
  46. Tian C., Li Z. Yang Z. et al. Plasma microRNA-16 is a biomarker for diagnosis, stratification, and prognosis of hyperacute cerebral infarction. PLoS One 2016; 11: e0166688. doi: 10.1371/journal.pone.0166688. PMID: 27846323.
  47. Leung L.Y., Chan C.P., Leung Y.K. et al. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta 2014; 433: 139–144. doi: 10.1016/j.cca.2014.03.007. PMID: 24650689.
  48. Tiedt S., Prestel M., Malik R. et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res 2017; 121: 970–980. doi: 10.1161/CIRCRESAHA.117.311572. PMID: 28724745.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Raskurazhev A.A., Tanashyan M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies