Laser-induced autofluorescence for assessment of methabolism and hemodynamic characteristics of the brain

Cover Page


Cite item

Full Text

Abstract

The paper contains results of the investigation of the laser-induced fluorescence detection method for the assessment of brain metabolism in situ through the dura mater. Models of anoxia and acute brain ischemia were used for the evaluation of reliability of the method utilizing registration of reduced tissue pyridine nucleotides fluorescence, as well as for the assessment of the viability index, based on the conversion of oxy- and deoxyhemoglobin. Some pathobiochemical mechanisms of alterations in the pool of pyridine nucleotides in anoxia and ischemia were analyzed.

 

About the authors

A. B. Salmina

Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

V. V. Salmin

Department of Photonics and Laser Technologies, IEPRE, Siberian Federal University

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

O. V. Frolova

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

D. I. Laletin

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

M. A. Fursov

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

D. P. Skomorokha

Department of Photonics and Laser Technologies, IEPRE, Siberian Federal University

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

A. A. Fursov

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

M. A. Kondrashov

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

N. N. Medvedeva

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

N. A. Malinovskaya

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Email: allasalmina@mail.ru
Россия, Krasnoyarsk

N. S. Mantorova

Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky

Author for correspondence.
Email: allasalmina@mail.ru
Россия, Krasnoyarsk

References

  1. Попов Ю.А., Салмин В.В., Салмина А.Б. и соавт. Спектрофлуориметрический метод оценки ишемии миокарда. Вестник КрасГУ, серия Физико-математические науки 2005; 4: 89–92.
  2. Салмин В.В., Салмина А.Б., Фурсов А.А. и соавт. Использование метода лазерно-флуоресцентной оптической биопсии миокарда для оценки ишемического повреждения. Журнал СФУ 2010 (в печати).
  3. Aubert A., Costalat R. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cerebr. Blood Flow Metab. 2005; 25: 1476–1490.
  4. Aubert A., Costalat R., Magistretti P.J., Pellerin L. Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc. Natl. Acad. Sci. 2005; 102 (45): 16448–16453.
  5. Aubert A., Pellerin L., Magistretti P.J., Costalat R. A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc. Natl. Acad. Sci. 2007; 104 (10): 4188–4193.
  6. Ciaume C., Koulakoff A., Roux L. et al. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nature Rev. Neuroscience 2010; 11: 87–99.
  7. De Georgia M.A. Multimodal monitoring in neurocritical care. Cleveland Clin. J. Med. 2004; 71 (Suppl. 1): S16–17.
  8. Di Lisa F., Menabo R., Canton M. et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 2001; 276: 2571–2575.
  9. Fiskum G., Danilov C.A., Mehrabian Z. et al. Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Ann. N.Y. Acad. Sci. 2008; 1147: 129–138.
  10. Foster K.A., Galeffi F., Gerich F.J. et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Progress in Neurobiol. 2006; 79: 136–171.
  11. Higashida H., Salmina A.B., Olovyannikova R.Ya., Hashii M. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem. Int. 2007; 51(2–4): 192–199.
  12. Higuchi T., Takeda Y., Hashimoto M. et al. Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J. Cerebr. Blood Flow Metab. 2002; 22 (1): 71–79.
  13. Ido Y., Chang K., Woolsey T.A., Williamson J.R. NADH: sensor of blood flow need in brain, muscle, and other tissues. FASEB J. 2001; 15: 1419–1421.
  14. Kahraman S., Fiskum G. Anoxia-induced changes in pyridine nucleotide redox state in cortical neurons and astrocytes. Neurochem. Res. 2007; 32 (4–5): 799–806.
  15. Kosterin P., Kim G.H., Muschol M. et al. Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J. Membr. Biol. 2005; 208 (2): 113–124.
  16. Kulik A., Rodriguez R.A., Nathan H.J., Ruel M. Intraoperative neuromonitoring in cardiac surgical patients with severe cerebrovascular disease. Can. J. Anaesth. 2005; 52 (3): 335–336.
  17. Mayevsky A., Rogatsky G.G. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am. J. Physiol. Cell Physiol. 2007; 292: C615–C640.
  18. Provorov A.S., Salmin V.V., Salmina A.B. et al. Pulsed gas lasers with longitudinal discharge and their application in medicine. Laser Physics. 2005; 15 (9): 1299–1302.
  19. Qui L., Zhao W., Sick T. Quantitative analysis of brain NADH in the presence of hemoglobin using microfiber spectrofluorometry: a pre-calibration approach. Computers in Biol. Med. 2005; 35: 583–601.
  20. Reinert K.C., Dunbar R.L., Gao W. et al. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J. Neurophysiol. 2004; 92: 199–211.
  21. Rex A., Fink F. Applications of laser-induced fluorescence spectroscopy for the determination of NADH in experimental neuroscience. Laser Phys. Letts. 2006; 3 (9): 452–459.
  22. Steinbrink J., Liebert A., Wabnitz H. et al. Towards noninvasive molecular fluorescence imaging of the human brain. Neurodegenerative Dis. 2008; 5: 296–303.
  23. Taga G., Asakawa K., Hirasawa K. and Konishi Y. Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: A near-infrared optical topography study. Early Human Development. 2003; 75 (Suppl.): S203–S210.
  24. Zhou L., Stanley W.C., Saidel G.M. et al. Regulation of lactate production at the onset of ischemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. J. Physiol. 2005; 569.3: 925–937.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Salmina A.B., Salmin V.V., Frolova O.V., Laletin D.I., Fursov M.A., Skomorokha D.P., Fursov A.A., Kondrashov M.A., Medvedeva N.N., Malinovskaya N.A., Mantorova N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies