The paper contains results of the investigation of the laser-induced fluorescence detection method for the assessment of brain metabolism in situ through the dura mater. Models of anoxia and acute brain ischemia were used for the evaluation of reliability of the method utilizing registration of reduced tissue pyridine nucleotides fluorescence, as well as for the assessment of the viability index, based on the conversion of oxy- and deoxyhemoglobin. Some pathobiochemical mechanisms of alterations in the pool of pyridine nucleotides in anoxia and ischemia were analyzed.
Laser-induced autofluorescence for assessment of methabolism and hemodynamic characteristics of the brain
- Authors: Salmina A.B.1, Salmin V.V.2, Frolova O.V.3, Laletin D.I.3, Fursov M.A.3, Skomorokha D.P.2, Fursov A.A.3, Kondrashov M.A.3, Medvedeva N.N.3, Malinovskaya N.A.3, Mantorova N.S.3
-
Affiliations:
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry
- Department of Photonics and Laser Technologies, IEPRE, Siberian Federal University
- Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
- Issue: Vol 5, No 3 (2011)
- Pages: 32-39
- Section: Original articles
- Submitted: 03.02.2017
- Published: 13.02.2017
- URL: https://annaly-nevrologii.com/journal/pathID/article/view/299
- DOI: https://doi.org/10.17816/psaic299
- ID: 299
Cite item
Full Text
Abstract
Keywords
About the authors
A. B. Salmina
Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
V. V. Salmin
Department of Photonics and Laser Technologies, IEPRE, Siberian Federal University
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
O. V. Frolova
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
D. I. Laletin
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
M. A. Fursov
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
D. P. Skomorokha
Department of Photonics and Laser Technologies, IEPRE, Siberian Federal University
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
A. A. Fursov
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
M. A. Kondrashov
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
N. N. Medvedeva
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
N. A. Malinovskaya
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
N. S. Mantorova
Department of Histology and Embryology Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky
Author for correspondence.
Email: allasalmina@mail.ru
Россия, Krasnoyarsk
References
- Попов Ю.А., Салмин В.В., Салмина А.Б. и соавт. Спектрофлуориметрический метод оценки ишемии миокарда. Вестник КрасГУ, серия Физико-математические науки 2005; 4: 89–92.
- Салмин В.В., Салмина А.Б., Фурсов А.А. и соавт. Использование метода лазерно-флуоресцентной оптической биопсии миокарда для оценки ишемического повреждения. Журнал СФУ 2010 (в печати).
- Aubert A., Costalat R. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cerebr. Blood Flow Metab. 2005; 25: 1476–1490.
- Aubert A., Costalat R., Magistretti P.J., Pellerin L. Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc. Natl. Acad. Sci. 2005; 102 (45): 16448–16453.
- Aubert A., Pellerin L., Magistretti P.J., Costalat R. A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc. Natl. Acad. Sci. 2007; 104 (10): 4188–4193.
- Ciaume C., Koulakoff A., Roux L. et al. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nature Rev. Neuroscience 2010; 11: 87–99.
- De Georgia M.A. Multimodal monitoring in neurocritical care. Cleveland Clin. J. Med. 2004; 71 (Suppl. 1): S16–17.
- Di Lisa F., Menabo R., Canton M. et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 2001; 276: 2571–2575.
- Fiskum G., Danilov C.A., Mehrabian Z. et al. Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Ann. N.Y. Acad. Sci. 2008; 1147: 129–138.
- Foster K.A., Galeffi F., Gerich F.J. et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Progress in Neurobiol. 2006; 79: 136–171.
- Higashida H., Salmina A.B., Olovyannikova R.Ya., Hashii M. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem. Int. 2007; 51(2–4): 192–199.
- Higuchi T., Takeda Y., Hashimoto M. et al. Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J. Cerebr. Blood Flow Metab. 2002; 22 (1): 71–79.
- Ido Y., Chang K., Woolsey T.A., Williamson J.R. NADH: sensor of blood flow need in brain, muscle, and other tissues. FASEB J. 2001; 15: 1419–1421.
- Kahraman S., Fiskum G. Anoxia-induced changes in pyridine nucleotide redox state in cortical neurons and astrocytes. Neurochem. Res. 2007; 32 (4–5): 799–806.
- Kosterin P., Kim G.H., Muschol M. et al. Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J. Membr. Biol. 2005; 208 (2): 113–124.
- Kulik A., Rodriguez R.A., Nathan H.J., Ruel M. Intraoperative neuromonitoring in cardiac surgical patients with severe cerebrovascular disease. Can. J. Anaesth. 2005; 52 (3): 335–336.
- Mayevsky A., Rogatsky G.G. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am. J. Physiol. Cell Physiol. 2007; 292: C615–C640.
- Provorov A.S., Salmin V.V., Salmina A.B. et al. Pulsed gas lasers with longitudinal discharge and their application in medicine. Laser Physics. 2005; 15 (9): 1299–1302.
- Qui L., Zhao W., Sick T. Quantitative analysis of brain NADH in the presence of hemoglobin using microfiber spectrofluorometry: a pre-calibration approach. Computers in Biol. Med. 2005; 35: 583–601.
- Reinert K.C., Dunbar R.L., Gao W. et al. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J. Neurophysiol. 2004; 92: 199–211.
- Rex A., Fink F. Applications of laser-induced fluorescence spectroscopy for the determination of NADH in experimental neuroscience. Laser Phys. Letts. 2006; 3 (9): 452–459.
- Steinbrink J., Liebert A., Wabnitz H. et al. Towards noninvasive molecular fluorescence imaging of the human brain. Neurodegenerative Dis. 2008; 5: 296–303.
- Taga G., Asakawa K., Hirasawa K. and Konishi Y. Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: A near-infrared optical topography study. Early Human Development. 2003; 75 (Suppl.): S203–S210.
- Zhou L., Stanley W.C., Saidel G.M. et al. Regulation of lactate production at the onset of ischemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. J. Physiol. 2005; 569.3: 925–937.