The robotic systems in neurorehabilitation

Cover Page


Cite item

Full Text

Abstract

Among the newest technologies in rehabilitation of post-stroke patients a special place belongs to the robot-therapy, which, compared with other technologies, to a greater degree embodies main principles of the modern theory of motor learning. In the review, the up-to-date condition of research on application of the robot-therapy in rehabilitation of post-stroke patients is analyzed. Discussed are advantages of the use of this new technology related to wide opportunities of modeling of training parameters, continuous computer analysis and control of patient’s voluntary participation, as well as to opportunity of carrying out long trainings with high repeatability of movements close to a physiological pattern. The prospects of development of the robotic systems in neurorehabilitation are considered.

 

About the authors

Lyudmila A. Chernikova

Reseach Center of Neurology

Author for correspondence.
Email: luda_cher44@mail.ru
Russian Federation, Moscow

References

  1. Кадыков А.С., Черникова Л.А., Шахпаронова Н.В. Реабилитация неврологических больных. М.: МЕДпресс-информ, 2008.
  2. Суслина З.А., Варакин Ю.Я., Верещагин Н.В. Сосудистые заболевания головного мозга. Эпидемиология. Патогенетические механизмы. Профилактика. М.: МЕДпресс-информ., 2009.
  3. Тарасова Л.Г., Черникова Л.А., Чубуков А.С. Применение метода форсированной тренировки паретичных конечностей как новый подход в реабилитации больных с постинсультными гемипарезами. Физиотерапия, реабилитация и бальнеология 2008; 1: 33–35.
  4. Черникова Л.А. Пластичность мозга и современные реабилитационные технологии. Анналы клин. и эксперим. неврологии 2007; 2: 40–47.
  5. Черникова Л.А., Демидова А.Е., Домашенко М.А. и др. Эффект применения роботизированных устройств («Эриго» и «Локомат») в ранние сроки после ишемического инсульта. Вестн. восстан. мед. 2008; 6: 6–10.
  6. Barbeau H., Visintin M. Optimal outcomes obtained with bodyweight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 2003; 84: 1458–1465.
  7. Boake C., Noser E.A., Ro T. et al. Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil. Neural. Repair 2007; 21: 14–24.
  8. Broga°rdh C., Sjo••lund B.H. Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt use. Clin. Rehabil. 2006; 20: 218–227.
  9. Burgar C.G., Lum P.S., Shor P.C. et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 2000; 37: 663–673.
  10. Chouinard P.A., Leonard G., Paus T. Changes in effective connectivity of the primary motor cortex in stroke patients after rehabilitative therapy. Exp. Neurol. 2006; 201: 375–387.
  11. Colombo G., Hostettler P. Der Lokomat – eine angetriebene GehOrthese. Med. Orth. Tech. 2000; 120: 178–181.
  12. Doeringer J.A., Hogan N. Performance of above elbow body-powered prostheses in visually guided unconstrained motion tasks. IEEE Trans. Biomed. Eng. 1995; 42: 621–631.
  13. Dromerick A.W., Edwards D.F., Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 2000; 31: 2984–2988.
  14. Fasoli S.E., Krebs H.I., Stein J. et al. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 2003; 84: 477–482.
  15. Hesse S. Locomotor therapy in neurorehabilitation. NeuroRehabilitation 2001; 16 : 133–139.
  16. Hesse S., Bertelt C., Schaffrin A. et al. Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body weight support. Arch. Phys. Med. Rehabil. 1994; 75: 1087–093.
  17. Hesse S., Sarkodie-Gyan T., Uhlenbrock D. Development of an advanced mechanized gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects. Biomed. Tech. (Berl). 1999; 44: 194–201.
  18. Hesse S., Schulte-Tigges G., Konrad M. et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 2003; 84: 915–920.
  19. Hesse S., Werner C., Pohl M. et al. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 2005; 36: 1960–1966.
  20. Hidler J. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil. Neural Repair 2009; 23: 5–13.
  21. Husemann B., Mu••ller F., Krewer C. et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007; 38: 349–354.
  22. Hussein S., Schmidt H., Volkmar M. et al. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008: 1961–1964.
  23. Kleim J.A., Barbay S., Cooper N.R. et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 2002; 77: 63–77.
  24. Kwakkel G., Kollen B.J., Krebs H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 2008; 22: 111–121.
  25. Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cogn. Behav. Neurol. 2006; 19: 41–47.
  26. Liepert J., Graef S., Uhde I. et al. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol. Scand. 2000; 101: 321–326.
  27. Luke L.M., Allred R.P., Jones T.A. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse 2004; 54: 187–199.
  28. Lum P.S., Burgar C.G., Shor P.C. et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002; 83: 952–959.
  29. Lum P.S., Burgar C.G., Van der Loos M. et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J. Rehabil. Res. Dev. 2006; 43: 631–642.
  30. Mayr A., Kofler M., Quirbach E. et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil. Neural Repair 2007; 21: 307–314.
  31. Mehrholz J., Platz T., Kugler J. et al. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst. Rev. 2008; 8: CD006876.
  32. Ng M.F., Tong R.K., Li L.S. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation. Six-month follow-up. Stroke 2008; 39: 154–160.
  33. Platz T. Impairment-oriented training (IOT)-scientific concept and evidence-based treatment strategies. Restor. Neurol. Neurosci. 2004; 22: 301–315.
  34. Pohl M., Werner C., Holzgraefe M. et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin. Rehabil. 2007; 21: 17–27.
  35. Prange G.B., Jannink M.J., GroothuisТOudshoorn C.G. et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 2006; 43: 171–184.
  36. Remple M.S., Bruneau R.M., VandenBerg P.M. et al. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav. Brain Res. 2001; 123: 133–141.
  37. Ro T., Noser E., Boake C. et al. Functional reorganization and recovery after constraint-induced movement therapy in subacute stroke: case reports. Neurocase 2006; 12: 50–60.
  38. Suputtitada A., Yooktanan P., Rarerng-Ying T. Effect of partial body weight support treadmill training in chronic stroke patients. J. Med. Assoc. Thai 2004; 87 (Suppl 2): S107–S111.
  39. Taub E., Miller N.E., Novack T.A. et al. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehab.1993; 74: 347–354.
  40. Visintin M., Barbeau H., Korner-Bitensky N. et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998; 29: 1122–1128.
  41. Wolf S.L., Lecraw D.E., Barton L.A. et al. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp. Neurol. 1989; 104: 125–132.
  42. Wolf S.L., Winstein C.J., Miller J.P. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296: 2095–2104.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Chernikova L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies