Use of cortical electrodes in solving visual prosthesis problems

Cover Page


Cite item

Abstract

There are two main approaches to visual function prosthesis in blind patients with the use of «brain-computer» interfaces – on the basis of either retinal or cortical stimulation by implanted electrodes. The most complex in visual prosthesis is creation of the specific part of the interface that directly contacts with the tissues. In the paper discussed are questions of biocompatibility of microelectrode arrays and behavioral effects on animals (cats) for evaluating functionality of the bioprosthetic device and its ability to induce phosphenes (visual sensations without light). Presented are new experimental methods and obtained results that allowed to determine phospheneinducing parameters of brain cortex electric stimulation in cats. Special attention is focused on description of the microelectrode array properties necessary for safe application in humans during the long time span, which is essential in cortical visual prosthesis.

 

About the authors

B. Kh. Baziyan

Research Center of Neurology, Russian Academy of Medical Sciences, Moscow

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

M. E. Ivanova

Research Center of Neurology, Russian Academy of Medical Sciences, Moscow

Email: platonova@neurology.ru
Russian Federation

S. A. Gordeev

Research Center of Neurology, Russian Academy of Medical Sciences, Moscow

Email: platonova@neurology.ru
Russian Federation

V. V. Ortmann

NeuroConnex, Meckenheim

Email: platonova@neurology.ru
Germany

References

  1. Базиян Б.Х., Гордеев С.А., Иванова М.Е., Ортманн В.В. Параметры индуцирующего фосфены электрического раздражения зрительной коры кошки с помощью имплантированных поверхностных и глубинных электродов. Бюлл. эксп. биол. и мед. 2008; 1: 8–11.
  2. Полянский В.Б. Морфо-функциональная характеристика структуры зрительного анализатора человека и животных после световой депривации. В кн.: А.Б. Коган (ред.) Проблемы протезирования сенсорных функций. Ростов-на-Дону: РГУ, 1981: 16–44.
  3. Bak M., Girvin J.P., Hambrecht F.T. et al. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med. Biol. Eng. Comput. 1990; 28: 257–259.
  4. Bartlett J.R., Doty R.W. An exploration of the ability of macaques to detect microstimulation of striate cortex. Acta Neurobiol. Exp. (Warsz.) 1980; 40: 713–728.
  5. Bradley D.C., Troyk P.R., Berg J.A. et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol. 2005; 93: 1659–1670.
  6. Brindley G.S. Report to the conference on visual prosthesis. In: Sterling T.D. (ed.) Visual Prosthesis, The Interdisciplinary Dialogue. New York: Academic Press, 1971: 41–48.
  7. Brindley G.S., Lewin W.S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 1968; 196: 479–493.
  8. DeYoe E.A., Lewine J.D., Doty R.W. Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J. Neurophysiol. 2005; 94: 3443–3450.
  9. Dobelle W.H. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 2000; 46: 3–9.
  10. Dobelle W.H., Mladejovsky M.G. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol. 1974; 243: 553–576.
  11. Ivanova M.E., Gordeev S.A., OrtmannV.V. et al. Evaluation of cortical visual prostheses microelectrode array function. Description of behavioral feline model. In: 30th Annual International IEEE EMBS Conference. Vancouver, 2008: 3371–3374.
  12. Kelly P.J., Dikmen F.N., Tarkington J.A. Photically oriented conditioned reflexes elicited by electrical stimulation of the visual system in the cat. Brain Res. 1973; 51: 293–305.
  13. Rejnoso-Suarez F. Topografischer Hirnatlas der Katze fur experimental-physiologische Untersuchungen. Darmstadt, 1961.
  14. Schmidt E.M., Bak M.J., Hambrecht F.T. et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 1996; 119: 507–522.
  15. Tehovnik E.J., Slocum W.M., Carvey C.E. et al. Phosphene induction and the generation of saccadic eye movements by striate cortex. J. Neurophysiol. 2005; 93: 1–19.

Copyright (c) 2009 Baziyan B.K., Ivanova M.E., Gordeev S.A., Ortmann V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies