Tissue-type plasminogen activator and MRI features of cerebral small vessel disease

Cover Page


Cite item

Full Text

Abstract

Introduction. Сerebral small vessel disease (SVD) is a one of the leading causes of cognitive decline, and of ischemic and hemorrhagic stroke. It is diagnosed with the MRI criteria elaborated by international society (STRIVE, 2013). The development of SVD is closely related with endothelial dysfunction. Of special importance are studies of factors produced by endothelium and participating in the pathogenesis of SVD.

Objective: to clarify the relationships of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI-1) with MRI signs of SVD.

Materials and methods. Seventy-one patients (23 males and 48 females, mean age 60.5±6.9) with SVD diagnosed according to the STRIVE criteria were examined. Arterial hypertension  of grade 1 was revealed in 12 patients, grade 2 in 7, and grade 3 in 37 patients. White matter hyperintensities (WMH), according to Fazekas (F) scale, were graded stage F1 in 17 patients, F2 in 23, and F3 in 30 patients. Control group comprised 21 age- and sex-matched individuals with normal brain MRI. Brain MRI (3 Tl) was performed in all patients, with the assessment of the following SVD features: WMH, lacunes, microbleeds, and enlarged perivascular spaces. Blood levels of t-PA and PAI-1 were measured by enzyme immunoassay. An ANOVA variance analysis was used (p<0.05).

Results. High t-PA level was associated with more severe WMHs assessed with Fazekas stages (p=0.000) and with larger volume of WMH (p=0.019), as well as with the size of subcortical and semioval perivascular spaces (p=0.001). This dependence was not related with the presence arterial hypertension or its characteristics (p>0.05). PAI-1 levels were not associated (p>0.05) with t-PA levels or MRI features of SVD.

Conclusion. The determined effect of t-PA level on the severity of WMH and perivascular spaces, the SVD features associated with increased blood-brain permeability, confirms the role of endothelial dysfunction in the development of SVD and the involvement of t-PA in the mechanisms of brain injury.

About the authors

Maryam R. Zabitova

Research Center of Neurology

Email: gadjieva@neurology.ru
Russian Federation, Moscow

Alla A. Shabalina

Research Center of Neurology

Email: gadjieva@neurology.ru
Russian Federation, Moscow

Larisa A. Dobrynina

Research Center of Neurology

Email: gadjieva@neurology.ru
ORCID iD: 0000-0001-9929-2725

D. Sci. (Med.), Head, 3rd Neurology department

Russian Federation, Moscow

Marina V. Kostyreva

Research Center of Neurology

Email: gadjieva@neurology.ru
Russian Federation, Moscow

Bulat M. Akhmetzyanov

Research Center of Neurology

Email: gadjieva@neurology.ru
Russian Federation, Moscow

Zukhra Sh. Gadzhieva

Research Center of Neurology

Author for correspondence.
Email: gadjieva@neurology.ru
Russian Federation, Moscow

Elena I. Kremneva

Research Center of Neurology

Email: gadjieva@neurology.ru
Russian Federation, Moscow

Elena V. Gnedovskaya

Research Center of Neurology

Email: gadjieva@neurology.ru
Russian Federation, Moscow

Marina V. Krotenkova

Research Center of Neurology

Email: gadjieva@neurology.ru
ORCID iD: 0000-0003-3820-4554

D. Sci. (Med.), Head, Neuroradiology department

Russian Federation, 125367 Moscow, Volokolamskoye shosse, 80

References

  1. Pantoni L., Gorelick Ph. Сerebral small vessel disease. Cambridge: Cambridge University Press, 2014. 360 p.
  2. Wardlow J.M., Smith E.E., Biessels G.J. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822–838. doi: 10.1016/S1474-4422(13)70124-8. PMID: 23867200.
  3. Del Brutto V.J., Ortiz J.G., Del Brutto O.H. et al. Total cerebral small vessel disease score and cognitive performance in community-dwelling older adults. Results from the Atahualpa Project. Int J Geriatr Psychiatry 2018; 33: 325–331. doi: 10.1002/gps.4747. PMID: 28548298.
  4. Song T.J., Kim J., Song D. et al. Total cerebral small-vessel disease score is associated with mortality during follow-up after acute ischemic stroke. J Clin Neurol. 2017; 13: 187–195. doi: 10.3988/jcn.2017.13.2.187. PMID: 28406586.
  5. Lau K.K., Li L., Schulz U., Simoni M. et al. Total small vessel disease score and risk of recurrent stroke: Validation in 2 large cohorts. Neurology 2017; 88: 2260–2267. doi: 10.1212/WNL.0000000000004042. PMID: 28515266.
  6. Lammie G.A., Brannan F., Slattery J., Warlow C., Nonhypertensive cerebral small-vessel disease. An autopsy study. Stroke 1997; 28: 2222–2229. PMID: 9368569.
  7. Dobrynina L.A., Zabitova M.R., Kalashnikova L.A. et al. [Hypertension and cerebral microangiopathy (cerebral small vessel disease): genetic and epigenetic aspects of their relationship]. Acta Naturae 2018; 10(2): 4–16. (In Russ.)
  8. Rajani R.M., Quick S., Ruigrok S.R. et al. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med 2018; 10: 1–12. doi: 10.1126/scitranslmed.aam9507. PMID: 29973407.
  9. Young V.G., Halliday G.M., Kril J.J. Neuropathologic correlates of white matter hyperintensities. Neurology 2008; 71: 804–811. doi: 10.1212/01.wnl.0000319691.50117.54. PMID: 18685136.
  10. Maksimova M.Yu. Malye glubinnye lakunarnye infarkty golovnogo mozga pri arterialnoj gipertenzii i ateroskleroze: Avtoref. dis. dokt. med. nauk [Small deep lacunar cerebral infarctions with arterial hypertension and atherosclerosis: author's abstract. dis. D.Sci. (Med)]. Moscow, 2002. 42 p. (In Russ.)
  11. Tomimoto H., Akiguchi I., Ohtani R. et al. The coagulation-fibrinolysis system in patients with leukoaraiosis and Binswanger disease. Arch Neurol 2001; 58: 1620–1625. PMID: 11594920.
  12. Markus H.S., Hunt B., Palmer K. et al. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study. Stroke 2005; 36: 1410–1414. doi: 10.1161/01.STR.0000169924.60783.d4. PMID: 15905468.
  13. Wardlaw J.M., Smith C., Dichgans M. Mechanisms underlying sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013; 12: 483–497. doi: 10.1016/S1474-4422(13)70060-7. PMID: 23602162.
  14. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333: 1581–1587. doi: 10.1056/NEJM199512143332401. PMID: 7477192.
  15. Niego B., Medcalf R.L. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 2014; 34: 1283–1296. doi: 10.1038/jcbfm.2014.99. PMID: 24896566.
  16. Freeman R., Niego B., Croucher D.R. et al. t-PA, but not desmoteplase, induces plasmin-dependent opening of a blood-brain barrier model under normoxic and ischaemic conditions. Brain Res 2014; 1565: 63–73. doi: 10.1016/j.brainres.2014.03.027. PMID: 24675027.
  17. Deanfield J.E., Halcox J.P., Rabelink T.J. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007; 115: 1285–1295. doi: 10.1161/CIRCULATIONAHA.106.652859. PMID: 17353456.
  18. van Overbeek E.C., Staals J., Knottnerus I.L. et al. Plasma tPA-activity and progression of cerebral white matter hyperintensities in lacunar stroke patients. PLoS One 2016; 11: e0150740. doi: 10.1371/journal.pone.0150740. PMID: 26942412.
  19. Knottnerus I.L., Govers-Riemslag J.W., Hamulyak K. et al. Endothelial activation in lacunar stroke subtypes. Stroke 2010; 41: 1617–1622. doi: 10.1161/STROKEAHA.109.576223. PMID: 20595673.
  20. McKhann G.M., Knopman D.S., Chertkow H. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 263–269. doi: 10.1016/j.jalz.2011.03.005. PMID: 21514250.
  21. Schmidt P., Wink L. LST: A lesion segmentation tool for SPM. Manual/Documentation for version 2.0.15 June 2017. URL: https://www.applied-statistics.de/LST_documentation.pdf
  22. Li Y., Li M., Zhang X. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden. J Neurol 2017; 264: 1474–1481. doi: 10.1007/s00415-017-8550-8. PMID: 28653212.
  23. Brown R., Benveniste H., Black S.E. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018; 114: 1462–1473. doi: 10.1093/cvr/cvy113. PMID: 29726891.
  24. Yepes M., Lawrence D.A. New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp Biol Med (Maywood) 2004; 229: 1097–1104. PMID: 15564435.
  25. Niego B., Freeman R., Puschmann T.B. et al. t-PA-specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes. Blood 2012; 119: 4752–4761. doi: 10.1182/blood-2011-07-369512. PMID: 22262761.
  26. Suzuki Y. Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci 2010; 113: 203–207. PMID: 20595786.
  27. Armao D., Kornfeld M., Estrada E.Y. et al. Neutral proteases and disruption of the blood-brain barrier in rat. Brain Res 1997; 767: 259–264. PMID: 9367256.
  28. Sashindranath M., Samson A.L., Downes C.E. et al. Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Lab Invest 2011; 91: 1079–1091. doi: 10.1038/labinvest.2011.67. PMID: 21519332.
  29. Adibhatla R.M., Hatcher J.F. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets 2008; 7: 243–253. PMID: 18673209.
  30. Fredriksson L., Lawrence D.A., Medcalf R.L. tPA modulation of the blood-brain barrier: a unifying explanation for the pleiotropic effects of tPA in the CNS. Semin Thromb Hemost. 2017; 43: 154–168. doi: 10.1055/s-0036-1586229. PMID: 27677179.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Zabitova M.R., Shabalina A.A., Dobrynina L.A., Kostyreva M.V., Akhmetzyanov B.M., Gadzhieva Z.S., Kremneva E.I., Gnedovskaya E.V., Krotenkova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies