Effects of zolpidem and protons on GABA-induced current in the hippocampal pyramidal neurons in the presence of penicillin

Cover Page


Cite item

Full Text

Abstract

Introduction. Type A receptors activated by gamma-aminobutyric acid (GABAAR) play an inhibitory role in the nervous system due to the generation of chlorine current (IGABA). Penicillin is a “sequential blocker” of the GABAAR open channel, which can inhibit dissociation of the GABA-receptor complex. This GABA site modulation suggests that the effects of competitive GABAAR modulators may change in the presence of penicillin.

The aim of the study was to evaluate the effect of zolpidem, the positive competitive GABAAR modulator, and hydrogen ions (protons), the negative competitive GABAAR modulator, on IGABA in the presence of penicillin.

Materials and methods. IGABA was measured on isolated pyramidal neurons of the rat hippocampus, using the patch clamp technique and fast application system. GABA, penicillin, and zolpidem were applied to the neuron for 600 msec via a lateral shift pipette. To study the effect of protons on IGABA, the GABA solution in the application pipette was acidified to pH 6.0–7.0.

Results. The application of 1 mmol of penicillin reduced the IGABA amplitude to 67 ± 4% of the control value. Zolpidem, with a concentration of 0.5 µmol, increased the IGABA amplitude to 167 ± 9% of the control value. When penicillin and zolpidem were co-applied, the stimulating effect of zolpidem was not observed, and the IGABA amplitude was 68 ± 4%. Reducing the pH of the GABA solution to 7.0 or 6.0 caused the IGABA amplitude to decrease to 80±4 and 35 ± 4%, respectively. The effect of protons on IGABA did not change in the presence of penicillin.

Conclusion. For the first time, it has been shown that the stimulating effect of zolpidem on IGABA is cancelled out by penicillin, while the inhibitory effect of protons on IGABA is preserved.

About the authors

Elena I. Solntseva

Research Center of Neurology

Author for correspondence.
Email: synaptology@mail.ru
Russian Federation, Moscow

Julia V. Bukanova

Research Center of Neurology

Email: synaptology@mail.ru
Russian Federation, Moscow

Vladimir G. Skrebitsky

Research Center of Neurology

Email: synaptology@mail.ru
Russian Federation, Moscow

References

  1. Sigel E., Steinmann M.E. Structure, function, and modulation of GABA(A) receptors. J Biol Chem 2012; 287: 40224–40231. doi: 10.1074/jbc.R112.386664. PMID: 23038269.
  2. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015; 72: 53–96. doi: 10.1016/bs.apha.2014.10.002. PMID: 25600367.
  3. Klinger F., Bajric M., Salzer I. et al. δ Subunit-containing GABAA receptors are preferred targets for the centrally acting analgesic flupirtine. Br J Pharmacol 2015; 172: 4946–4958. doi: 10.1111/bph.13262. PMID: 26211808.
  4. Benveniste M., Mayer M.L. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J Physiol 1995; 483: 367–384. doi: 10.1113/jphysiol.1995.sp020591. PMID: 7650609.
  5. Rossokhin A.V., Sharonova I.N., Bukanova J.V. et al. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism. Mol Cell Neurosci 2014; 63: 72–82. doi: 10.1016/j.mcn.2014.10.001. PMID: 25305478.
  6. Wisden W., Yu X., Franks N.P. GABA receptors and the pharmacology of sleep. Handb Exp Pharmacol 2019; 253: 279–304. doi: 10.1007/164_2017_56. PMID: 28993837.
  7. Bomalaski M.N., Claflin E.S., Townsend W., Peterson M.D. Zolpidem for the treatment of neurologic disorders: a systematic review. JAMA Neurol 2017; 74: 1130–1139. doi: 10.1001/jamaneurol.2017.1133. PMID: 28655027.
  8. Hanson S.M., Czajkowski C. Disulphide trapping of the GABA(A) receptor reveals the importance of the coupling interface in the action of benzodiazepines. Br J Pharmacol 2011; 162: 673–687. doi: 10.1111/j.1476-5381.2010.01073.x. PMID: 20942818.
  9. Chen Z.L., Huang R.Q. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus. Neuroscience 2014; 271: 64–76. doi: 10.1016/j.neuroscience.2014.04.028. PMID: 24780768.
  10. Huang R.Q., Chen Z., Dillon G.H. Molecular basis for modulation of recombinant alpha1beta2gamma2 GABAA receptors by protons. J Neurophysiol 2004; 92: 883–894. doi: 10.1152/jn.01040.2003. PMID: 15028749.
  11. Zhou C., Xiao C., Deng C., Hong Ye J. Extracellular proton modulates GABAergic synaptic transmission in rat hippocampal CA3 neurons. Brain Res 2007; 1145: 213–220. doi: 10.1016/j.brainres.2007.01.121. PMID: 17321506.
  12. Leng T.D., Si H.F., Li J. et al. Amiloride analogs as ASIC1a inhibitors. CNS Neurosci Ther 2016; 22: 468–476. doi: 10.1111/cns.12524. PMID: 26890278.
  13. Chow K.M., Hui A.C., Szeto C.C. Neurotoxicity induced by beta-lactam antibiotics: from bench to bedside. Eur J Clin Microbiol Infect Dis 2005; 24: 649–653. doi: 10.1007/s10096-005-0021-y. PMID: 16261307.
  14. Wilkins M.E., Hosie A.M., Smart T.G. Identification of a beta subunit TM2 residue mediating proton modulation of GABA type A receptors. J Neurosci 2002; 22: 5328–5333. doi: 10.1523/JNEUROSCI.22-13-05328.2002. PMID: 12097484.
  15. Kisiel M., Jatczak-Śliwa M., Mozrzymas J.W. Protons modulate gating of recombinant α1β2γ2 GABAA receptor by affecting desensitization and opening transitions. Neuropharmacology 2019; 146: 300–315. doi: 10.1016/j.neuropharm.2018.10.016. PMID: 30326242.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Solntseva E.I., Bukanova J.V., Skrebitsky V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-83204 от 12.05.2022.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies