Safety of pathogenetic therapy for multiple sclerosis during the COVID-19 pandemic

Cover Page


Cite item

Abstract

The safety of pathogenetic therapy for multiple sclerosis (MS) is a crucial aspect of the therapeutic strategy during the COVID-19 pandemic.

Based on our own data, obtained during the study of MS pathogenesis and safety analysis of MS disease-modifying therapies (DMTs), we hereby suggest a classification of DMTs side effects, based on their type, development, and direction of action. There is a need to thoroughly analyse adverse events caused by pathogenetic therapy, with a balanced assessment of the direct vs. adverse effects of immunosuppressive drugs.

Based on available literature, in the article, data on the effect of DMTs with various mechanisms of action on severe coronavirus infection are systematized.

Interferon-β and glatiramer acetate are the safest drugs to use during the COVID-19 pandemic. Teriflunomide, dimethyl fumarate, natalizumab, ocrelizumab, fingolimod, alemtuzumab, and cladribine should be used with caution. Drugs with a minor systemic immunosuppressant effect (e.g. natalizumab) and selective immunosuppressants (e.g. ocrelizumab) are safer than drugs that cause non-selective depletion of T and B cells.

It must be stressed that the risk of MS exacerbation and progression due to untimely prescription or cessation of pathogenetic therapy can significantly exceed the potential risk of COVID-19.

Long-term safety monitoring is required for DMTs during the COVID-19 pandemic and when the epidemiological situation stabilizes.

Full Text

Первые препараты для патогенетической терапии, изменяющие течение рассеянного склероза (ПИТРС), имели сравнительно небольшие побочные эффекты, прежде всего связанные с развитием локальных постинъекционных реакций, краткосрочного гриппоподобного синдрома, влиянием на печёночные ферменты. ПИТРС нового поколения (моноклональные и пероральные препараты) значительно превосходят препараты первой линии по эффективности, но их применение в ряде случаев сопровождается выраженными побочными эффектами [1]. Таким образом, анализ параметров безопасности, возможного побочного действия ПИТРС при назначении и переключении препаратов приобретает первостепенное значение.

В 2020 г. началась пандемия новой инфекции СOVID-19, вызываемой РНК-вирусом SARS-CoV-2 и характеризующейся высоким риском развития неблагоприятных осложнений, связанных как с острой дыхательной недостаточностью, так и с поражением многих органов и систем, в том числе ЦНС [2]. В настоящее время безопасность ПИТРС в условиях риска инфицирования коронавирусом или одновременного течения рассеянного склероза (РС) и COVID-19 имеет особо важное значение.

Спектр неврологических нарушений при COVID-19 достаточно широк: от краниальных мононевропатий, проявляющихся в виде аносмии и агевзии/дисгевзии, до острой воспалительной полинейропатии Гийена–Барре и тяжёлых поражений головного и спинного мозга в виде миелопатий и острой геморрагической некротизирующей энцефалопатии [3–5].

Неврологические нарушения при COVID-19 могут быть обусловлены гипоксемией, нарушениями гомеостаза (энцефалопатия критических состояний), нейротропностью и нейровирулентностью вируса SARS-CoV-2 (изолированное поражение черепных нервов, очаговые и диффузные поражения ЦНС), цитокиновым штормом, а также сочетанным воздействием перечисленных факторов [6, 7]. COVID-19 может оказывать влияние на течение хронических неврологических заболеваний, связанных прежде всего с нейроиммунными нарушениями, в том числе РС [8–11].

При воздействии SARS-CoV-2 на нейроглию предполагается участие аутоиммунных механизмов в демиелинизации белого вещества головного мозга [12]. Апоптоз, гибель олигодендроцитов, активация ряда провоспалительных цитокинов (интерлейкина-1, -6, -12, γ-интерферона (γ-ИФН), трансформирующего фактора роста-β) могут способствовать развитию иммуноопосредованного поражения наиболее подверженных эксайтотоксичности мозговых структур [13, 14]. У пациентов с тяжёлым COVID-19 наблюдаются признаки выраженной иммунной дизрегуляции, о чём могут свидетельствовать гиперцитокинемия из-за потенциально замедленной воспалительной реакции врождённой иммунной системы и снижения общего количества Т-клеток, из которых оставшиеся иммуноциты частично гиперактивированы и истощены. Выработка антител, вероятно, может способствовать выздоровлению/восстановлению, и на сегодняшний день нет чётких доказательств того, что антитела играют существенную негативную роль в патогенезе [15].

В Институте мозга человека им. Н.П. Бехтеревой РАН оценка повреждений ЦНС и иммунной системы при РС проводится с применением как клинических неврологических, так и радиологических нейровизуализационных и иммунологических методов. Помимо рутинных исследований по изучению иммунного статуса пациентов с РС на фоне патогенетической терапии [16], нами проводятся исследования особенностей вовлечения белого и серого вещества головного мозга в демиелинизирующий патологический процесс при различных типах течения РС [17, 18], анализируются уровни и дифференцировка ключевых иммуноцитов, когнитивные и двигательные нарушения в зависимости от степени выраженности неврологического дефицита при РС [19, 20].

Оба заболевания (РС и COVID-19) имеют иммуноопосредованную природу, терапия обоих во многом зависит от применения иммунотропных препаратов.

Для патогенетического лечения РС регуляторными органами Российской Федерации зарегистрированы около 20 оригинальных препаратов и биоаналогов с различными путями введения. К инъекционным ПИТРС относятся различные препараты β-ИФН и глатирамера ацетат (ГА), препараты на основе моноклональных антител — натализумаб, алемтузумаб и окрелизумаб, к пероральным — терифлуномид, диметилфумарат, финголимод, кладрибин, сипонимод. Некоторые из этих препаратов в той или иной степени можно отнести к иммуносупрессорам: инъекционные ПИТРС на основе моноклональных антител алемтузумаб и окрелизумаб, пероральные препараты диметилфумарат, кладрибин, финголимод, сипонимод.

Ранее нами проведены исследования и проанализированы данные по безопасности и эффективности патогенетической терапии, используемой при различных типах течения РС, в том числе пероральных ПИТРС [21–29], предложена классификация побочных эффектов по преимущественному воздействию на ту или иную систему, по динамике развития (быстрые — инфузионные реакции, долговременные — аутоиммунные, опухолевые осложнения), по типу действия (прямое действие и действие в результате отмены препарата), по механизмам развития (прямая и опосредованная иммуносупрессия, аутоиммунный, аллергический механизмы, неконтролируемая пролиферация клеток). Отмечено, что побочные эффекты ПИТРС, связанные с иммуносупрессорным действием, можно разделить по направленности действия — клиническим проявлениям иммунодефицитных состояний у пациентов: инфекционные осложнения, в том числе оппортунистические инфекции, гематологические нарушения, расстройства работы желудочно-кишечного тракта, аутоиммунные осложнения, аллергические реакции, в том числе инфузионные, новообразования, пороки развития у потомства [1]. Полагаем, что по мере накопления данных при долгосрочном применении ПИТРС в условиях реальной клинической практики степень иммунотропного/иммуносупрессорного влияния препаратов будет уточняться.

Безопасность применения ПИТРС, наряду с эффективностью и приверженностью, является важнейшим компонентом, определяющим терапевтическую стратегию при РС в период пандемии.

До сих пор нет убедительных доказательств влияния ПИТРС на инфицирование вирусом SARS-CoV-2 и течение COVID-19, вопрос влияния ПИТРС на процесс инфицирования в литературе не обсуждается, т.к. вирулентность SARS-Cov-2 вряд ли будет зависеть от применяемых ПИТРС. Более того, не понятно, характерен ли для пациентов с РС больший риск развития тяжёлого COVID-19 или развития выраженной, а не бессимптомно протекающей инфекции. Кроме того, пока не известно влияние SARS-CoV-2 инфекции на прогрессирование РС.

Прежде всего, следует предпринять усилия для определения, влияет ли применение ПИТРС (как в целом, так и конкретных препаратов) на риск развития тяжёлого COVID-19.

Применение ИФН-ПИТРС не сопровождается дополнительными рисками в период пандемии COVID-19. Известно, что ИФН являются противовирусными агентами [30, 31].

Недавние сообщения о тяжёлых случаях COVID-19 среди пациентов с низкой экспрессией гена рецептора ИФН IFNAR2 [32, 33] и наличием анти-ИФН-нейтрализующих антител [34] предполагают, что ИФН I типа, вероятно, повышают защитный иммунитет против вируса SARS-CoV-2. Результаты исследований в клинике показывают, что использование ИФН-препаратов, применяемых отдельно или в комбинации с противовирусными средствами, может приводить к разнонаправленным результатам у пациентов с SARS-CoV-2 в плане как облегчения симптомов COVID, так и сокращения продолжительности вирусного носительства и сроков госпитализации [35].

Применение ГА в период пандемии также не несёт дополнительных рисков. Более того, в 2020 г. проведено экспериментальное исследование антивирусной активности комплекса конъюгатов ГА и ситаглиптина, специфического ингибитора дипептидилпептидазы-4, способного уменьшать выраженность цитокинового ответа у пациентов с COVID-19 [36]. Показано, что применение ситаглиптина ассоциируется со снижением смертности при госпитализации пациентов с сахарным диабетом 2-го типа и COVID-19 [37]. Потенциальный иммуномодулирующий эффект подтверждается снижением концентрации С-реактивного белка и прокальцитонина [38].

Недавние исследования свидетельствуют о том, что ГА также имеет протективный потенциал против COVID-19 за счёт воздействия на активность натуральных клеток-киллеров [39].

Комплекс конъюгатов ГА–ситаглиптин, по мнению авторов исследования, может обеспечивать оптимальное взаимодействие с клетками-мишенями, ингибировать специфическую протеазу, и тем самым оказывать противовирусное действие [40]. Полагаем, что дальнейшие исследования в этом направлении необходимы для подтверждения клинической эффективности данного комплекса против вируса SARS-CoV-2.

Имеющиеся к настоящему времени данные по применению терифлуномида на фоне подтверждённой коронавирусной инфекции у пациентов с РС позволяют с большой вероятностью сделать вывод об отсутствии взаимосвязи данного препарата с тяжестью течения COVID-19 [41]. Некоторые авторы полагают, что терифлуномид не только не увеличивает связанные с инфицированием SARS-CoV-2 риски, но и способен проявлять специфическую противовирусную активность. Подобные предположения базируются на известном механизме действия препарата, включающем угнетение пролиферации быстро делящихся клеток, в том числе активированных Т- и В-лимфоцитов, и отсутствии изменений иммуноклеточного состава и признаков активации иммунной системы у пациентов, постоянно получавших терифлуномид во время SARS-CоV-2 инфекции [42], что может сопровождаться уменьшением тяжести течения COVID-19 за счёт предотвращения чрезмерного иммунного ответа организма при контакте с коронавирусом [43].

В проведённых в период пандемии исследованиях отмечается потенциальный риск терапии препаратами анти-CD20 антител у пациентов с подтверждённым COVID-19. По данным итальянского и североамериканского регистров, включающих пациентов РС с коронавирусной инфекцией, более тяжёлое течение COVID-19 зарегистрировано на фоне приёма окрелизумаба и ритуксимаба [44, 45]. Аналогичные результаты получены шведскими коллегами, широко применяющими ритуксимаб офф-лейбл [46, 47]. Данные, представленные в испанском регистре пациентов, прямо не указывают на выраженную взаимосвязь тяжести течения COVID-19 и применения препаратов патогенетической терапии, но свидетельствуют о более высокой частоте госпитализаций у пациентов, принимающих ритуксимаб [48]. По данным латиноамериканского регистра [49], в исследовании австрийских [50] и французских коллег взаимосвязи применения анти-CD20 антител с тяжестью коронавирусной инфекции не обнаружено, но отмечено, как и в работе английских специалистов [51], что наибольшему риску течения тяжёлого COVID-19 были подвержены пациенты мужского пола, старшего возраста и с высокими баллами инвалидизации по шкале EDSS [52]. По данным 12 регистров, в которые включены более 2300 пациентов с РС и коронавирусной инфекцией, необходимость в госпитализации и пребывании в палатах интенсивной терапии чаще возникала на фоне применения окрелизумаба и ритуксимаба, но дополнительная искусственная вентиляция лёгких требовалась только пациентам, принимавшим ритуксимаб [53]. Следует подчеркнуть, что представленные в сообщениях результаты пока не имеют чётких обоснований, продолжается накопление данных для дальнейшего анализа [54]. Имеются рекомендации об отсрочке инфузий препаратов анти-CD20-антител для снижения риска инфекционных осложнений в период пандемии [55]. Известно, в частности, что при задержке инфузии окрелизумаба происходит репопуляция В-лимфоцитов независимо от заболевания COVID-19. Отсрочка терапии окрелизумабом не влияет на клинические и лабораторные показатели у пациентов с РС в период протекания коронавирусной инфекции [56].

Анти-CD20-антитела, вызывающие деплецию периферических В-лимфоцитов, снижают продукцию интерлейкина-6, имеющего существенное негативное влияние на развитие пневмовирусной инфекции. У пациентов с тяжёлым респираторным дистресс-синдромом уровень интерлейкина-6 существенно выше, чем у пациентов с тяжёлой формой пневмонии [57, 58]. Результаты, представленные голландскими специалистами, свидетельствуют об отсутствии связи между применяемыми ПИТРС и прогрессированием и исходом COVID-19 у пациентов с РС; взаимосвязь между снижением количества лимфоцитов и тяжёлым течением коронавирусной инфекции не установлена [59].

Однако вышеприведённые публикации не включали результаты пациентов с бессимптомным течением СOVID-19, которые составляют до 30% от общего числа инфицированных больных в популяции [60] и преимущественно представлены молодыми пациентами и лицами женского пола [61].

Продолжаются дискуссии о применении вызывающих деплецию лимфоцитов ПИТРС в условиях пандемии. В некоторых исследованиях обсуждается протективная роль иммуносупрессорных препаратов при СOVID-19 [62]. В более поздних работах указывается на повышение риска серьёзных инфекций на фоне приёма алемтузумаба и кладрибина по сравнению с инъекционными препаратами 1-й линии независимо от возраста, пола больных и типа течения РС [63]. Однако нет убедительных данных, свидетельствующих об ухудшении течения СOVID-19 у таких пациентов [64].

Инфузии алемтузумаба теоретически могут сопровождаться развитием тяжёлых форм COVID-19, особенно если проникновение вируса произошло до иммунной реконституции. Длительная деплеция Т-клеток может вызывать инфекционные осложнения, а деплеция В-лимфоцитов — оказывать влияние на выработку антител и, соответственно, на ответ при вакцинации [65].

С другой стороны, медикаментозная иммуносупрессия при РС позволяет избегать гипернапряжения иммунной системы и вероятного развития цитокинового шторма (одной из основных причин тяжёлого течения COVID-19) [66] и может рассматриваться как обладающая защитной ролью, поскольку острый респираторный дистресс-синдром при COVID-19 связан прежде всего с дизрегуляцией иммунной системы [55]. Продукция IgG-антител во время иммуносупрессии позволяет предположить эффективность вакцинации против COVID-19 у когорты пациентов на фоне инфузий алемтузумаба и терапии иными иммуносупрессорами, вызывающими деплецию иммунокомпетентных клеток, но должна быть проведена обязательная оценка иммунного ответа в динамике [67, 68].

В настоящее время следует придерживаться обновлённых рекомендаций для минимизации риска терапии алемтузумабом, учитывая возможность развития инфекционных и аутоиммунных осложнений, патологической иммунной активации [69]. Требуется тщательный контроль за безопасностью как при назначении препарата, так и при переключении с других ПИТРС. Во время пандемии, по мнению ряда авторов, необходимо отложить инфузии алемтузумаба до стабилизации эпидемиологической ситуации [55, 70].

Риск тяжёлого течения COVID-19 при использовании натализумаба и финголимода, препятствующих проникновению агрессивных лимфоцитов в центральную нервную систему, расценивается как незначительный [71].

Один из основных вопросов безопасности применения натализумаба в период пандемии COVID-19 связан с нейротропностью вируса SARS-CoV-2 и вероятностью развития в редких случаях COVID-ассоциированного энцефалита [72].

С другой стороны, несмотря на совершенно различные механизмы действия, натализумаб и финголимод могут рассматриваться и как протективные ПИТРС в отношении инфекции SARS-CoV-2. Натализумаб может ограничивать повреждение моноцитов и Т-клеток в лёгких, а финголимод, являясь неселективным модулятором cфингозин-1-фосфатных рецепторов, способен предотвращать чрезмерное вовлечение cфингозин-1-фосфатных рецепторов моноцитов и макрофагов во время аномальной воспалительной реакции при COVID-19 [73].

По данным, полученным Д. Малуччи с соавт. в ходе исследования пациентов с РС и лёгким течением коронавирусной инфекции, натализумаб и финголимод могут рассматриваться как относительно безопасные препараты для пациентов с активным РС, в том числе в период пандемии COVID-19 [74].

В период пандемии возможно сокращение продолжительности введения инфузионных ПИТРС. По данным Л. Рат с соавт., cокращение времени введения натализумаба и окрелизумаба не влияет на безопасность терапии, не ассоциируется с увеличением риска инфузионных реакций, инфузии хорошо переносятся, но одновременно существенно уменьшается время пребывания пациентов в стационаре, что расценивается как положительный аспект терапии в период пандемии COVID-19 [75].

Одна из групп пациентов с РС, требующих особого внимания, — это пациенты с высокоактивной формой заболевания, характеризующейся более высокой частотой обострений и более ранней инвалидизацией, к которой можно отнести до 15% пациентов уже при первоначальной постановке диагноза РС [76].

Применение таблетированного кладрибина у пациентов с высокоактивным РС стало возможным после его регистрации в России в 2020 г., что совпало с развитием пандемии COVID-19. Препарат назначается двумя короткими курсами в год в первые 2 года лечения с последующим периодом без приёма препарата на 3-й и 4-й год, что, несомненно, является удобной и повышающей приверженность схемой терапии. Лечение иммуносупрессором кладрибином селективно снижает количество циркулирующих Т- и В-лимфоцитов. Восстановление количества лимфоцитов происходит вскоре после окончания приёма кладрибина. Абсолютное число лимфоцитов возвращается к нормальным значениям, а количество CD19 (В-клеток) — к нижней границе нормы через 30 нед после приёма последней дозы препарата. Количество CD4-T-клеток восстанавливается до нижней границы нормы примерно через 43 нед после приёма последней дозы, а уровень CD8+-Т-клеток не опускается ниже нормы [77, 78]. Случаев развития прогрессивной мультифокальной лейкоэнцефалопатии на фоне приёма кладрибина не выявлено [79].

Неоднозначные результаты получены при изучении потенциального вклада кладрибина в процесс выработки специфических антител к вирусу SARS-CoV-2. В некоторых случаях наблюдается положительный результат через 2–3 мес после инфицирования [80, 81]. В другом исследовании показано, что антитела к SARS-CoV-2 не обнаруживаются [82]. Подобная картина наблюдалась и при применении моноклональных анти-CD20-антител и алемтузумаба [83]. Требуются дальнейшие исследования, которые позволят прояснить возможную роль кладрибина в продукции антител не только при непосредственном заражении вирусом SARS-CoV-2, но и при вакцинации от COVID-19 [84]. В целом, согласно представленным недавно результатам, пациенты, получавшие кладрибин при РС, как правило, не подвергаются большему риску серьёзного заболевания и/или тяжёлого исхода при COVID-19 по сравнению с общей популяцией населения или популяцией пациентов с РС [85].

Таким образом, применение ИФН-β 1a и 1b не связано с увеличением риска тяжёлого течения COVID-19 [86]. ИФН, проявляющие противовирусную активность, могут рассматриваться как протективные препараты, особенно на ранних стадиях COVID-19 [87]. Следует принимать во внимание, что у вируса SARS-CoV-2 может развиваться резистентность к ИФН, а в гипервоспалительной стадии COVID-19 ИФН могут оказать негативное действие, способствуя инвазии макрофагов в лёгкие и другие органы. ГА не ассоциируется с развитием COVID-19 и может считаться безопасным. Терифлуномид может проявлять противовирусную активность, истощая клеточные нуклеотиды, необходимые для репликации вируса, диметилфумарат — обеспечить защиту от SARS-CoV-2, усиливая клеточную защиту от оксидативного стресса, финголимод потенциально может оказать благоприятное действие в гипервоспалительную стадию COVID-19, усиливая эндотелиальный барьер [88]. С определённой осторожностью рекомендуется применять натализумаб, алемтузумаб, кладрибин. Препараты с незначительным системным иммуносупрессорным действием (например, натализумаб) и иммуносупрессорные препараты селективного действия (например, окрелизумаб) являются более безопасными, чем препараты, вызывающие неселективную деплецию Т- и В-лимфоцитов [89]. При развитии ятрогенной гипогаммаглобулинемии в некоторых случаях может потребоваться применение иммуноглобулинов [65].

Вопросы ведения пациентов с РС в период пандемии должны решаться индивидуально в зависимости от риска COVID-19, активности РС [90–92]. Иммунокомпрометированные пациенты с коморбидной патологией (сахарным диабетом, заболеваниями дыхательной и сердечно-сосудистой систем), лица старшего возраста требуют особого внимания.

Согласно недавно опубликованным результатам опроса европейских неврологов, большинство специалистов по РС (62%) придерживаются мнения, что назначение первого ПИТРС при постановке диагноза в период пандемии должно базироваться на обычных показаниях, как и в рутинной практике; 23% неврологов при стартовой терапии предлагают воздерживаться от назначения препаратов, вызывающих деплецию лимфоцитов. Около 50% неврологов полагают, что вопросы, связанные с переключением терапии в период COVID-19, следует решать по клиническим показаниям, независимо от механизма действия препаратов ПИТРС, и только 15% врачей рекомендуют отложить принятие решения до нормализации эпидемиологической обстановки [93].

Таким образом, COVID-19, вызванный вирусом SARS-CoV-2, может затрагивать центральную и периферическую нервную систему. Имеется связь между тяжестью COVID-19 и выраженностью неврологических нарушений, которые могут осложнять течение COVID-19. Вопрос о влиянии вируса SARS-CoV-2 на течение РС пока остаётся открытым [94].

Препараты патогенетической терапии РС обладают различными механизмами действия, которые потенциально могут объяснить различия рисков течения COVID-19 на фоне их приёма [15, 95]. Использование иммуносупрессорных препаратов в период пандемии создаёт для неврологов и пациентов дополнительные проблемы.

Безопасность терапии является непременным условием лечения РС, что особенно важно в период пандемии. Считаем необходимым подчеркнуть, что риск развития обострений и прогрессирования РС от несвоевременного назначения или прекращения патогенетической терапии может значительно превысить потенциальный риск COVID-19.

Имеющиеся данные о безопасности применения ПИТРС в период пандемии COVID-19 являются неполными, требуется долговременный мониторинг, в том числе в связи с появлением и распространением новых штаммов коронавируса, активной вакцинации. Анализ безопасности патогенетической терапии должен строиться как на существующих рекомендациях, так и на новых данных, полученных при применении ПИТРС в период пандемии, и индивидуальном подходе к лечению.

×

About the authors

Andrey M. Petrov

N.P. Beсhtereva Institute of Human Brain of the Russian Academy of Sciences

Email: sid@ihb.spb.ru
ORCID iD: 0000-0001-9648-5492

Cand. Sci. (Med.), senior researcher, laboratory of neuroimmunology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 9

Marina V. Votintseva

N.P. Beсhtereva Institute of Human Brain of the Russian Academy of Sciences

Email: sid@ihb.spb.ru
ORCID iD: 0000-0002-0728-8903

junior researcher, Laboratory of neuroimmunology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 9

Igor D. Stolyarov

N.P. Beсhtereva Institute of Human Brain of the Russian Academy of Sciences

Author for correspondence.
Email: sid@ihb.spb.ru
ORCID iD: 0000-0001-8154-9107

D. Sci. (Med.), Prof., Head, Laboratory of neuroimmunology and MS center

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 9

References

  1. Столяров И.Д., Петров А.М., Вотинцева М.В., Ивашкова Е.В. Безопасность иммуносупрессорных препаратов, изменяющих течение рассеянного склероза. Нервные болезни. 2018; 3: 16-21. Stolyarov I.D., Petrov A.M., Votintseva M.V., Ivashkova E.V. Safety of the immunosuppressing disease-modifying therapies in multiple sclerosis. Nervnye bolezni. 2018; 3: 16–21. doi: 10.24411/2071-5315-2018-12028
  2. World Health Organization. Coronavirus disease (COVID-19) situation reports. 2020. 11 March. URL: httph://www.int/ru/dg/speech-es/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid19
  3. Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19. Клиническая практика. 2020; 11(2): 60–80. Belopasov V.V., Yashu Ya., Samoilova E.M., Baklaushev V.P. Damage to the nervous system in COVID-19. Klinicheskaya praktika. 2020; 11(2): 60–80. (In Russ.) doi: 10.17816/clinpract34851
  4. Román G.C., Spencer P.S., Reis J. et al. The neurology of COVID-19 revisited: a proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological registries. J. Neurol. Sci. 2020; 414: 116884. doi: 10.1016/j.jns.2020.116884
  5. Tsai S.T., Lu M.K., San S., Tsai C.H. The neurologic manifestations of Coronavirus Disease 2019 pandemic: a systemic review. Front. Neurol. 2020; 11: 498. doi: 10.3389/fneur.2020.00498
  6. Sepehrinezhad A., Shahbazi A., Negah S.S. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J. Neurovirol. 2020; 26(3): 324–329. doi: 10.1007/s13365-020-00851-2
  7. Vonck K., Garrez I., De Herdt V. et al. Neurological manifestations and neuroinvasive mechanisms of the severe acute respiratory syndrome Coronavirus Type 2. Eur. J. Neurol. 2020; 27(8): 1578–1587. doi: 10.1111/ene.14329
  8. Dalakas M.C. Guillain–Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol. Neuroimmunol. Neuroinflamm. 2020; 7(5): e781. doi: 10.1212/NXI.00000000000007811.
  9. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 1–9. doi: 10.1001/jamaneurol.2020.1127.
  10. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
  11. Sellner J., Taba P., Öztürk S., Helbok R. The need for neurologists in the care of COVID-19 patients. Eur. J. Neurol. 2020; 27(9):e31–e32. doi: 10.1111/ene.14257
  12. Yashavantha Rao H.C., Jayabaskaran C. The emergence of a novel Coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients. J. Med. Virol. 2020; 92(7): 786–790. doi: 10.1002/jmv.25918.53
  13. Robinson C.P., Busl K.M. Neurologic manifestations of severe respiratory viral contagions. Crit. Care Explor. 2020; 2(4): e0107. doi: 10.1097/CCE.0000000000000107
  14. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–1034. doi: 10.1016/S0140-6736(20)30628-0
  15. Zrzavy T., Wimmer I., Rommer P.S., Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur. J. Neurol. 2021; 28(10): 3503–3516. doi: 10.1111/ene.14578
  16. Столяров И.Д., Петров А.М., Вотинцева М.В., Ивашкова Е.В. Нейроиммунология: теоретические и клинические аспекты. Физиология человека. 2013; 39(1): 51–59. Stolyarov I.D., Petrov A.M., Votintseva M.V., Ivashkova E.V. Neuroimmunology: theoretical and clinical aspects. Fiziologiya cheloveka. 2013; 39(1): 40–47. (In Russ.) doi: 10.7868/S0131164613010153
  17. Столяров И.Д., Петров А.М., Шкильнюк Г.Г. и др. Возможности позитронно-эмиссионной томографии для изучения механизмов развития рассеянного склероза (литературные и собственные данные). Журнал неврологии и психиатрии им. C.C. Корсакова. 2016; 116(2–2): 27–31. Stolyarov I.D., Petrov A.M., Shkilnyuk G.G. et al. Capabilities of positron emission tomography to study mechanisms of multiple sclerosis: own data and literature. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2016; 116(2–2): 27–31. (In Russ.) doi: 10.17116/jnevro20161162227-31
  18. Столяров И.Д., Петров А.М., Вотинцева М.В. Атрофия головного мозга и эффективность препаратов патогенетической терапии при рассеянном склерозе. Нервные болезни. 2017; 4: 10–17. Stolyarov I.D., Petrov A.M., Votintseva M.V. Atrophy of the brain and the efficiency of pathogenetic therapy in multiple sclerosis. Nervnye bolezni. 2017; 4: 10–17. (In Russ.)
  19. Кудрявцев И.В., Кробинец И.И., Минеев К.К. и др. Субпопуляционный состав Т-хелперов и цитотоксических Т-лимфоцитов периферической крови при рассеянном склерозе. Цитокины и воспаление. 2016; 15(1): 91–99. Kudryavtsev I.V., Krobinets I.I., Mineev K.K. et al. Helper and cytotoxic T lymphocyte subsets in patients with multiple sclerosis. Tsytokiny i vospalenie. 2016; 15(1): 91–99. (In Russ.)
  20. Минеeв К.К., Петров А.М., Вотинцева М.В., Столяров И.Д. Взаимосвязь двигательных и когнитивных нарушений при рассеянном склерозе. Анналы клинической и экспериментальной неврологии. 2020; 14(4): 23–28. Mineev K.K., Petrov A.M., Votintseva M.V., Stolyarov I.D. The correlation between motor and cognitive dysfunction in multiple sclerosis. Annals of clinical and experimental neurology. 2020; 14(4): 23–28. (In Russ.) doi: 10.25692/ACEN.2020.4.3
  21. Столяров И.Д., Петров А.М., Горохова Т.В. Терифлуномид в терапии ремиттирующего рассеянного склероза: эффективность и безопасность. Неврологический журнал. 2013; 18(2): 48–51. Stolyarov I.D., Petrov A.M., Gorohova T.V. Teriflunomide in treatment of remitting-relapsing multiple sclerosis: efficacy and safety. Nevrologicheskiy zhurnal. 2013; 18(2): 48–51. (In Russ.)
  22. Рекомендации по использованию новых препаратов для патогенетического лечения рассеянного склероза. М.; 2011. 141 с. Recommendations on the use of new drugs for the pathogenetic treatment of multiple sclerosis. Moscow; 2011. 141 p. (In Russ.)
  23. Бойко А.Н., Столяров И.Д., Сидоренко Т.В. и др. Патогенетическое лечение рассеянного склероза: настоящее и будущее. Журнал неврологии и психиатрии им. С.С. Корсакова. 2009; 109 (7–2): 90–99. Boyko A.N., Stolyarov I.D., Sidorenko T.V. et al. Pathogenetic treatment of multiple sclerosis: present and future. Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. 2009; 109 (7–2): 90–99. (In Russ.)
  24. Петров А.М., Ивашкова Е.В., Столяров И.Д. Новые возможности терапии вторично-прогрессирующего рассеянного склероза. Неврология, нейропсихиатрия, психосоматика. 2019; 11(4): 125–129. Petrov A.M., Stolyarov I.D., Ivashkova E.V. New possibilities for the therapy of secondary progressive multiple sclerosis. Nevrologiya, nejropsihiatriya, psihosomatika. 2019; 11(4): 125–129. (In Russ.) doi: 10.14412/2074-2711-2019-4-125-129
  25. Столяров И.Д., Петров А.М., Ивашкова Е.В., Вотинцева М.В. Исследования лекарственных средств при рассеянном склерозе: научные, клинические и этические аспекты. Неврологический журнал. 2018; 23(1): 16–22. Stolyarov I.D., Petrov A.M., Ivashkova E.V., Votintseva M.V. Drug research in multiple sclerosis: scientific, clinical, and ethical aspects. Nevrologicheskiy zhurnal. 2018; 23(1): 16–22. (In Russ.) doi: 10.18821/1560-9545-2018-23-1-16-21
  26. Вотинцева М.В., Петров А.М., Столяров И.Д. Препараты на основе моноклональных антител: настоящее и будущее в лечении рассеянного склероза (по материалам 32-го Конгресса Европейского комитета по лечению и исследованию рассеянного склероза — ECTRIMS). Анналы клинической и экспериментальной неврологии. 2017; 10(2): 83–88. Votintseva M.V., Petrov A.M., Stolyarov I.D. Monoclonal antibodies: present and future in the treatment of multiple sclerosis (based on the Proceedings of the 32nd congress of the European Committee for Treatment and Research in Multiple Sclerosis — ECTRIMS)]. Annals of clinical and experimental neurology. 2017; 10(2): 83–88. (In Russ.) doi: 10.18454/ACEN.2017.2.12
  27. Рассеянный склероз. Моноклональная терапия / под ред. И.Д. Столя-рова. М.; 2019. 240 с. Stolyarov I.D. (ed.) Multiple sclerosis. Monoclonal therapy. Мoscow; 2019. 240 p. (In Russ.)
  28. Coles A.J., Twyman C.L., Arnold D.L. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012; 380(9856): 1829–1839. doi: 10.1016/S0140-6736(12)61768-1
  29. Berger T., Elovaara I., Stolyarov I. et al. Alemtuzumab use in clinical practice: recommendations from European Multiple Sclerosis Experts. CNS Drugs. 2017; 31(1): 33-50. doi: 10.1007/s40263-016-0394-8
  30. Sallard E., Lescure F.X., Yazdanpanah Y. et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020; 178: 104791. doi: 10.1016/j.antiviral.2020.104791
  31. Reder A., Adamo A., Wicklein E.-M., Bhatti A. Use and safety of interferon beta-1b during the COVID-19 outbreak: current data from a pharmacovigilance safety database. ECTRIMS/ACTRIMS MSVirtual2020; 11–13 Sept 2020. URL: https://msvirtual2020.org/
  32. Zhang Q., Bastard P., Liu Z. et al. Inborn errors of type I IFN immunity in patients with life threatening COVID-19. Science. 2020; 370(6515): eabd4570. doi: 10.1126/science.abd4570
  33. Pairo-Castineira E., Clohisey S., Klaric L. et al. Genetic mechanisms of cri- tical illness in COVID-19. Nature. 2021; 591(7848): 92–98. doi: 10.1038/s41586-020-03065-y
  34. Bastard P., Rosen L.B., Zhang Q. et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020; 370(6515): eabd4585. doi: 10.1126/science.abd4585
  35. Reder A.T., Centonze D., Naylor M.L. et al. COVID-19 in patients with multiple sclerosis: associations with disease-modifying therapies. CNS Drugs. 2021; 35: 317–330. doi: 10.1007/s40263-021-00804-1
  36. Bardaweel S.K., Hajjo R., Sabbah D.A. Sitagliptin: a potential drug for the treatment of COVID-19? Acta Pharm. 2021; 71: 175–184. doi: 10.2478/acph-2021-0013
  37. Solerte S.B., D’Addio F., Trevisan R. et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 dia- betes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care. 2020; 43: 2999–3006. doi: 10.2337/dc20-1521
  38. Ugwueze C.V., Ezeokpo B.C., Nnolim B.I. et al. COVID-19 and diabetes mellitus: the link and clinical implications. Dubai Diabetes Endocrinol. J. 2020; 26: 69–77.
  39. Al-Ani M., Elemam N.M., Hundt J.E., Maghazachi A.A. Drugs for multiple sclerosis activate natural killer cells: do they protect against COVID-19 Infection? Infect. Drug Resist. 2020; 13: 3243–3254. doi: 10.2147/IDR.S269797
  40. Alhakamy N.A., Ahmed O.A.A., Ibrahim T.S. et al. Evaluation of the antiviral activity of sitagliptin-glatiramer acetate nano-conjugates against SARS-CoV-2 virus. Pharmaceuticals (Basel). 2021; 14(3): 178. doi: 10.3390/ph14030178
  41. Capone F., Motolese F., Luce T. et al. COVID-19 in teriflunomide-treated patients with multiple sclerosis: A case report and literature review. Mult. Scler. Relat. Disord. 2021; 48: 102734. doi: 10.1016/j.msard.2020.102734
  42. Ciardi M.R., Zingaropoli M.A., Pasculli P. et al. The peripheral blood immune cell profile in a teriflunomide-treated multiple sclerosis patient with COVID-19 pneumonia. J. Neuroimmunol. 2020; 346: 577323. doi: 10.1016/j.jneuroim.2020.577323
  43. Maghzi A.H., Houtchens M.K., Preziosa P. et al. COVID-19 in teriflunomide-treated patients with multiple sclerosis. J. Neurol. 2020; 267: 2790–2796. doi: 10.1007/s00415-020-09944-8
  44. Sormani M.P., De Rossi N., Schiavetti I. et al. Disease modifying therapies and COVID-19 severity in multiple sclerosis. Ann. Neurol. 2021; 89(4): 780–789. doi: 10.1002/ana.26028
  45. Salter A., Halper J., Bebo B. et al. COViMS Registry: clinical characterization of SARS-CoV-2 infected multiple sclerosis patients in North America. ECTRIMS/ACTRIMS MSVirtual2020; 11–13 Sept 2020. Abstract 2128. URL: https://msvirtual2020.org
  46. Landtblom A.M., Berntsson S.G., Boström I., Iacobaeus E. Multiple sclerosis and COVID-19: The Swedish experience. Acta Neurol. Scand. 2021; 144(3): 229–235. doi: 10.1111/ane.13453
  47. Spelman T., Forsberg L., McKay K. et al. Increased rate of hospitalization for COVID-19 amongst Rituximab treated multiple sclerosis patients: a study of the Swedish MS Registry. Mult Scler. 2021; 13524585211026272. doi: 10.1177/13524585211026272
  48. Arrambide G., Llaneza-González M.Á., Costa-Frossard França L., et al. SARS-CoV-2 Infection in Multiple Sclerosis: Results of the Spanish Neurology Society Registry. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1024. Published 2021 Jun 24. doi: 10.1212/NXI.0000000000001024
  49. Alonso R., Silva B., Garcea O. et al. COVID-19 in multiple sclerosis and neuromyelitis optica spectrum disorder patients in Latin America: COVID-19 in MS and NMOSD patients in LATAM. Mult. Scler. Relat. Disord. 2021; 51: 102886. doi: 10.1016/j.msard.2021.102886
  50. Bsteh G., Assar H., Hegen H. et al. COVID-19 severity and mortality in multiple sclerosis are not associated with immunotherapy: Insights from a nation-wide Austrian registry. PLoS One. 2021; 16(7): e0255316. doi: 10.1371/journal.pone.0255316
  51. Middleton R.M., Craig E.M., Rodgers W.J. et al. COVID-19 in multiple sclerosis: clinically reported outcomes from the UK Multiple Sclerosis Register. Mult. Scler. Relat. Disord. 2021; 56: 103317. doi: 10.1016/j.msard.2021.103317
  52. Louapre C., Collongues N., Stankoff B. et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020; 77: 1079–1088. doi: 10.1001/jamaneurol.2020.2581
  53. Simpson-Yap S., De Brouwer E., Kalincik T. et al. Associations of disease-modifying therapies with COVID-19 severity in multiple sclerosis. Neurology. 2021; 97(19): e1870–e1885. doi: 10.1212/WNL.0000000000012753
  54. Roach C.A., Cross A.H. Anti-CD20 B cell treatment for relapsing multiple sclerosis. Front. Neurol. 2021; 11: 595547. doi: 10.3389/fneur.2020.595547
  55. Giovannoni G., Hawkes C., Lechner-Scott J. et al. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult. Scler. Relat. Disord. 2020; 39: 102073. doi: 10.1016/j.msard.2020.102073
  56. Barun B., Gabelić T., Adamec I. et al. Influence of delaying ocrelizumab do-sing in multiple sclerosis due to COVID-19 pandemics on clinical and laboratory effectiveness. Mult. Scler. Relat. Disord. 2021; 48: 102704. doi: 10.1016/j.msard.2020.102704
  57. Chen C., Shi L., Li Y. et al. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol. Toxicol. 2016; 32(3): 169–184. doi: 10.1007/s10565-016-9322-4
  58. Percopo C.M., Ma M., Brenner T.A. et al. Critical adverse impact of IL-6 in acute pneumovirus infection. J. Immunol. 2019; 202(3): 871–882. doi: 10.4049/jimmunol.1800927
  59. Loonstra F.C., Hoitsma E., van Kempen Z.L. et al. COVID-19 in multiple sclerosis: the Dutch experience. Mult. Scler. 2020; 26(10): 1256–1260. doi: 10.1177/1352458520942198
  60. Oran D.P., Topol E.J. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann. Intern. Med. 2020; 173(5): 362–367. doi: 10.7326/M20-3012
  61. Meng Y., Wu Ping, Lu W. et al. Sex-specific clinical characteristics and pro- gnosis of coronavirus disease-19 infection in Wuhan, China: a retrospective study of 168 severe patients. PLoS Pathog. 2020; 16: e1008520. doi: 10.1371/journal.ppat.1008520
  62. Novi G., Mikulska M., Briano F. COVID-19 in a MS patient treated with ocrelizumab: does immunosuppression have a protective role? Mult. Scler. Relat. Disord. 2020; 42: 102120. doi: 10.1016/j.msard.2020.102120
  63. Sormani M.P., De Rossi N., Schiavetti I. et al. Disease-modifying therapies and Coronavirus Disease 2019 severity in multiple sclerosis. Ann. Neurol. 2021; 89(4): 780–789. doi: 10.1002/ana.26028
  64. Costa G. D., Leocani L., Montalban X. Real-time assessment of COVID-19 prevalence among multiple sclerosis patients: a multicenter European study. Neurol. Sci. 2020; 41(7): 1647–1650. doi: 10.1007/s10072-020-04519-x
  65. Zheng C., Kar I., Chen C.K. et al. Multiple sclerosis disease-modifying therapy and the COVID-19 pandemic: implications on the risk of infection and future vaccination. CNS Drugs. 2020; 34(9): 879–896. doi: 10.1007/s40263-020-00756-y
  66. Hojyo S., Uchida M., Tanaka K.et al. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020; 40: 37. doi: 10.1186/s41232-020-00146-3
  67. Iovino A., Olivieri N., Aruta F. et al. Alemtuzumab in COVID era. Mult. Scler. Relat. Disord. 2021; 51: 102908. doi: 10.1016/j.msard.2021.102908
  68. Centonze D., Rocca M.A., Gasperini C. et al. Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: an expert consensus. J. Neurol. 2021; 268(11): 3961–3968. doi: 10.1007/s00415-021-10545-2
  69. Хачанова Н.В., Бахтиярова К.З., Бойко А.Н. и др. Обновленные рекомендации совета экспертов по применению и обеспечению безопасности терапии препаратом алемтузумаб (Лемтрада). Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120(3): 82–91. Khachanova N.V., Bakhtiyarova K.Z., Boyko A.N. et al. Updated recommendations of the Council of Experts on the use and safety of therapy with alemtuzumab (Lemtrada). Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2020; 120(3): 82–91. (In Russ.) doi: 10.17116/jnevro202012003182
  70. Brownlee W., Bourdette D., Broadley S. et al. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020; 94(22): 949–952. doi: 10.1212/WNL.0000000000009507
  71. Berger J.R., Brandstadter R., Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol. Neuroimmunol. Neuroinflamm. 2020; 7(4): e761. doi: 10.1212/NXI.0000000000000761
  72. Ellul M.A., Benjamin L., Singh B. et al. Neurological associations of COVID-19. Lancet Neurol. 2020; 19(9): 767–783. doi: 10.1016/S1474-4422(20)30221-0
  73. Baker D., Amor S., Kang A.S. et al. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult. Scler. Relat. Disord. 2020; 43: 102174. doi: 10.1016/j.msard.2020.102174
  74. Mallucci G., Zito A., Baldanti F. et al. Safety of disease-modifying treatments in SARS-CoV-2 antibody-positive multiple sclerosis patients. Mult. Scler. Relat. Disord. 2021; 49: 102754. doi: 10.1016/j.msard.2021.102754
  75. Rath L., Bui M.V., Ellis J. et al. Fast and safe: optimising multiple sclerosis infusions during COVID-19 pandemic. Mult. Scler. Relat. Disord. 2021; 47: 102642. doi: 10.1016/j.msard.2020.102642
  76. Diaz C., Zarco L.A., Rivera D.M. Highly active multiple sclerosis: an update. Mult. Scler. Relat. Disord. 2019; 30: 215–224. doi: 10.1016/j.msard.2019.01.039
  77. Comi G., Cook S., Giovannoni G. et al. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2019; 29: 168–174. doi: 10.1016/j.msard.2019.01.038.
  78. Cook S., Leist Т., Comi G. et al. Safety of cladribine tablets in the treatment of patients with multiple sclerosis: an integrated analysis. Mult. Scler. Relat. Disord. 2019; 29: 157–167. doi: 10.1016/j.msard.2018.11.021
  79. Бахтиярова К.З., Бойко А.Н., Власов Я.В. и др. Рекомендации по использованию кладрибина в таблетках для патогенетического лечения пациентов с высокоактивным рассеянным склерозом. Неврология, нейропсихиатрия, психосоматика. 2020; 12(3): 93–99. Bakhtiyarova K.Z., Boyko A.N., Vlasov Ya.V. et al. Recommendations for the use of cladribine tablets for the pathogenetic treatment of patients with highly active multiple sclerosis. Nevrologiya, nejropsihiatriya, psihosomatika. 2020; 12(3): 93–99. (In Russ.) doi: 10.14412/2074-2711-2020-3-93-99
  80. Preziosa P., Rocca M.A., Nozzolillo A. et al. COVID-19 in cladribine-treated relapsing-remitting multiple sclerosis patients: a monocentric experience. J. Neurol. 2020; 20: 1–3. doi: 10.1007/s00415-020-10309-4
  81. Celius E.G. Normal antibody response after COVID-19 during treatment with cladribine. Mult. Scler. Relat. Disord. 2020; 46: 102476. doi: 10.1016/j.msard.2020.102476
  82. Gelibter S., Orrico M., Filippi M., Moiola L. COVID-19 with no antibody response in a multiple sclerosis patient treated with cladribine: Implication for vaccination program? Mult. Scler. Relat. Disord. 2021; 49: 102775. doi: 10.1016/j.msard.2021.102775
  83. Zabalza S., Cárdenas-Robledo P., Tagliani G. et al. COVID-19 in MS patients: susceptibility, severity risk factors and serological response. Eur. J. Neurol. 2020; 19: ene.1469. doi: 10.1111/ene.14690
  84. Sellner J.; Rommer P.S. Multiple sclerosis and SARS-CoV-2 vaccination: considerations for immune-depleting therapies. Vaccines (Basel). 2021; 9(2): 99. doi: 10.3390/vaccines9020099
  85. Jack D., Damian D., Nolting A., Galazka A. COVID-19 in patients with multiple sclerosis treated with cladribine tablets: an update. Mult. Scler. Relat. Disord. 2021; 51: 102929. doi: 10.1016/j.msard.2021.102929
  86. Sormani M.P., Salvetti M., Labauge P. et al. DMTs and COVID-19 severity in MS: a pooled analysis from Italy and France. Ann. Clin. Transl. Neurol. 2021; 8(8): 1738–1744. doi: 10.1002/acn3.51408
  87. Wang N., Zhan Y., Zhu L. et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host. Microbe. 2020; 28(3): 455–464.e2. doi: 10.1016/j.chom.2020.07.005
  88. Alborghetti M., Bellucci G., Gentile A. et al. Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Curr. Neuropharmacol. 2022; 20(1): 107–125. doi: 10.2174/1570159X19666210330094017
  89. Amor S., Baker D., Khoury S.J. et al. SARS-CoV-2 and multiple sclerosis: not all immune depleting DMTs are equal or bad. Ann. Neurol. 2020; 87: 794–797. doi: 10.1002/ana.25770. PMID: 32383812.
  90. Гусев Е.И., Мартынов М.Ю., Бойко А.Н. и др. Новая коронавирусная инфекция (COVID19) и поражение нервной системы: механизмы неврологических расстройств, клинические проявления, организация неврологической помощи. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120(6): 7–16. Gusev E.I., Martynov M.Yu., Boyko A.N. et al. New coronavirus infection (COVID19) and damage to the nervous system: mechanisms of neurological disorders, clinical manifestations, organization of neurological care. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2020; 120(6): 7–16. (In Russ.) doi: 10.17116/jnevro20201200617.
  91. Sastre-Garriga J., Tintore M., Montalban X. Keeping standards of multiple sclerosis care through the COVID-19 pandemic. Mult. Scler. 2020; 26(10): 1153–1156. doi: 10.1177/1352458520931785
  92. Moss B.P., Mahajan K.R., Bermel R.A. et al. Multiple sclerosis management during the COVID-19 pandemic. Mult. Scler. J. 2020; 26: 1163–1171. doi: 10.1177/1352458520948231
  93. Portaccio E., Fonderico M., Hemmer B. et al. Impact of COVID-19 on multiple sclerosis care and management: results from the European Committee for Treatment and Research in Multiple Sclerosis survey. Mult. Scler. 2022; 28(1): 132–138. doi: 10.1177/13524585211005339
  94. Chaudhry F., Jageka C., Levy P.D. et al. Review of the COVID-19 risk in multiple sclerosis. J. Cell Immunol. 2021; 3(2): 68–77. doi: 10.33696/immunology.3.080
  95. Sharifian-Dorche M., Sahraian M.A., Fadda G. et al. COVID-19 and disease-modifying therapies in patients with demyelinating diseases of the central nervous system: a systematic review. Mult. Scler. Relat. Disord. 2021; 50: 102800. doi: 10.1016/j.msard.2021.102800

Copyright (c) 2022 Petrov A.M., Votintseva M.V., Stolyarov I.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies